

A Level

Mathematics

Session:	2010 June
Туре:	Mark scheme
Code:	3890-7890; 3892-7892
Units:	4721; 4722; 4723; 4724; 4725; 4726; 4727;
	4728; 4729; 4730; 4731; 4732; 4733; 4734;
	4735; 4736; 4737

© UCLES

Mathematics

Advanced Subsidiary GCE 4721

Core Mathematics 1

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

1 (i)	1	B1	1	
(ii)	$\frac{1}{3}$	M1		$\frac{1}{q^{\frac{1}{2}}}$ or $\frac{1}{\sqrt{9}}$ soi
		A1	2 3	cao
2 (i)	y _	B1*		Reasonably correct curve for $y = -\frac{1}{x^2}$ in
	x			3 rd and 4 th quadrants only
		B1 dep*	2	Very good curves in curve for $y = -\frac{1}{x^2}$ in
		•		3 rd and 4 th quadrants
				SC If 0, very good single curve in either 3 rd or 4 th quadrant and nothing in other three quadrants. B1
(ii)	y A			
		M1		Translation of their $y = -\frac{1}{x^2}$ vertically
		A1	2	Reasonably correct curve, horizontal asymptote soi at $y = 3$
(iii)	$y = -\frac{2}{2}$	B1	1	
	x ²		5	
3 (i)	$\frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$	M1		Multiply numerator and denom by $3 - \sqrt{5}$
	$=\frac{12(3-\sqrt{5})}{9}$	A1		$(3+\sqrt{5})(3-\sqrt{5}) = 9-5$
	$=9-3\sqrt{5}$	A1	3	
(ii)	$3\sqrt{2} - \sqrt{2}$	M1		Attempt to express $\sqrt{18}$ as $k\sqrt{2}$
	$=2\sqrt{2}$	A1	2 5	

4 (i)	$(x^2 - 4x + 4)(x + 1)$	M1		Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
		A1		Expansion with at most 1 incorrect term
	$=x^3-3x^2+4$	A1	3	Correct, simplified answer
(ii)	4	B1		+ve cubic with 2 or 3 roots
		B1		Intercept of curve labelled (0, 4) or indicated on <i>y</i> -axis
	-1 2	B1	3	(-1, 0) and turning point at $(2, 0)$ labelled or indicated on x axis and no other x intercents
	/		6	indicated on x-axis and no other x intercepts
5	$k = x^2$ $4k^2 + 3k - 1 = 0$	M1*		Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^2
	(4k-1)(k+1) = 0	M1 dep		Correct method to solve a quadratic
	$k = \frac{1}{4}$ (or $k = -1$)	A1		
	- 1 + 1	M1		Attempt to square root to obtain x
	$x = \pm \frac{1}{2}$	A1	5	$\pm \frac{1}{2}$ and no other values
			5	
6	$y = 2r + 6r^{-\frac{1}{2}}$	M1		Attempt to differentiate
U	y = 2x + 6x	A1		$kx^{-\frac{3}{2}}$
	$\frac{dy}{dx} = 2 - 3x^{-\frac{1}{2}}$	A1		Completely correct expression (no +c)
				3 1
	When $x = 4$, gradient = $2 - \frac{3}{\sqrt{4^3}}$	M1		Correct evaluation of either 4^{-2} or 4^{-2}
	= <u>13</u>	A1	5	
	8		5	
7	$2(6-2y)^2 + y^2 = 57$	M1*		substitute for x/y or attempt to get an
				$\cdot \cdot $
		A1		correct unsimplified expression
	$2(36 - 24y + 4y^2) + y^2 = 57$	A1		correct unsimplified expression
	$2(36-24y+4y^{2}) + y^{2} = 57$ $9y^{2} - 48y + 15 = 0$	A1 A1		obtain correct 3 term quadratic
	$2(36-24y+4y^{2}) + y^{2} = 57$ $9y^{2} - 48y + 15 = 0$ $3y^{2} - 16y + 5 = 0$	A1 A1		equation in 1 variable only correct unsimplified expression obtain correct 3 term quadratic
	$2(36-24y+4y^{2}) + y^{2} = 57$ $9y^{2} - 48y + 15 = 0$ $3y^{2} - 16y + 5 = 0$ (3y-1)(y-5) = 0	A1 A1 M1 dep		equation in 1 variable only correct unsimplified expression obtain correct 3 term quadratic correct method to solve 3 term quadratic
	$2(36-24y+4y^{2}) + y^{2} = 57$ $9y^{2} - 48y + 15 = 0$ $3y^{2} - 16y + 5 = 0$ (3y-1)(y-5) = 0 $y = \frac{1}{3} \text{ or } y = 5$	A1 A1 M1 dep A1		equation in 1 variable only correct unsimplified expression obtain correct 3 term quadratic correct method to solve 3 term quadratic

8 (i)	$2(x^2 + \frac{5}{2}x)$	B1		$\left(r+\frac{5}{2}\right)^2$
	$=2\left[\left(x+\frac{5}{4}\right)^2-\frac{25}{16}\right]$	M1		$\begin{pmatrix} x & 4 \\ q & -2p^2 \end{pmatrix}$
	$=2\left(x+\frac{5}{4}\right)^2-\frac{25}{8}$	A1	3	$q = -\frac{25}{8}$ c.w.o.
(ii)	$\left(-\frac{5}{4},-\frac{25}{8}\right)$	B1√ B1√	2	
(iii)	$x = -\frac{5}{4}$	B1	1	
(iv)	x(2x+5) > 0	M1		Correct method to find roots
		A1		$0, -\frac{5}{2}$ seen
	$x < -\frac{5}{2}, x > 0$	M1		Correct method to solve quadratic
_	2	A1	4 10	(not wrapped, strict inequalities, no 'and')
9 (i)	$\frac{4+p}{2} = -1, \frac{5+q}{2} = 3$	M1		Correct method (may be implied by one correct coordinate)
	p = -6 $q = 1$	A1 A1	3	
(ii)	$r^{2} = (4 - 1)^{2} + (5 - 3)^{2}$	M1		Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for
	$r = \sqrt{29}$	A1	2	either radius or diameter
(;;;;)	$(x+1)^2 + (x-2)^2 = 20$	M1		$(x+1)^2$ and $(y-3)^2$ seen
(111)	(x+1) + (y-3) - 29	M1		$(x \pm 1)^2 + (y \pm 3)^2 = \text{their } r^2$
	$x^2 + y^2 + 2x - 6y - 19 = 0$	A1	3	Correct equation in correct form
(iv)	gradient of radius = $\frac{3-5}{-1-4}$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{2}{5}$	A1		oe
	gradient of tangent = $-\frac{5}{2}$	В1√		oe
	$y-5 = -\frac{5}{2}(x-4)$	M1		correct equation of straight line through (4, 5), any non-zero gradient
	$y = -\frac{5}{2}x + 15$	A1	5 13	oe 3 term equation e.g. $5x + 2y = 30$

10(i)	$\frac{dy}{dx} = 6x^2 + 10x - 4$	B1 B1		1 term correct Completely correct (no +c)
	$6x^{2} + 10x - 4 = 0$ 2(3x^{2} + 5x - 2) = 0	M1*		Sets their $\frac{dy}{dx} = 0$
	2(3x + 3x - 2) = 0 (3x-1)(x+2) = 0	M1 dep*		Correct method to solve quadratic
	$x = \frac{1}{3}$ or $x = -2$	A1		SC If A0 A0, one correct pair of values,
	$y = -\frac{19}{27}$ or $y = 12$	A1	6 A1	B1
(ii)	$-2 < x < \frac{1}{2}$	M1		Any inequality (or inequalities) involving
	3	A1	2	Allow \leq and \geq
(iii)	When $x = \frac{1}{2}$, $6x^2 + 10x - 4 = \frac{5}{2}$	M1		Substitute $x = \frac{1}{2}$ into their $\frac{dy}{dx}$
	and $2x^3 + 5x^2 - 4x = -\frac{1}{2}$	B1		Correct y coordinate
	$y + \frac{1}{2} = \frac{5}{2} \left(x - \frac{1}{2} \right)$	M1		Correct equation of straight line using their values. Must use their $\frac{dy}{dx}$ value not e.g. the
				negative reciprocal
	10x - 4y - 7 = 0	A1	4	Shows rearrangement to given equation CWO throughout for A1
(iv)	y† j	B1		Sketch of a cubic with a tangent which meets it at 2 points only
		B 1	2	+ve cubic with max/min points and line
			14	with +ve gradient as tangent to the curve to the right of the min
	x			SC1 B1 Convincing algebra to show that the cubic $8x^3 + 20x^2 - 26x + 7 = 0$ factorises into (2x - 1)(2x - 1)(x + 7) B1 Correct argument to say there are 2 distinct roots SC2 B1 Recognising y = 2.5x -7/4 is tangent from part (iii) B1 As second B1 on main scheme

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Mathematics

Advanced Subsidiary GCE 4722

Core Mathematics 2

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

1 (i)	f(2) = 8 + 4a - 2a - 142a - 6 = 0a = 3	M1*		Attempt f(2) or equiv, including inspection / long division / coefficient matching
		M1d*		Equate attempt at $f(2)$, or attempt at remainder, to 0 and attempt to solve
		<u>A1</u>	3	Obtain $a = 3$
(ii)	f(-1) = -1 + 3 + 3 - 14 = -9	M1		Attempt f(-1) or equiv, including inspection / long division / coefficient matching
		A1 ft	2	Obtain -9 (or $2a - 15$, following their a)
			5	
2 (i)	area $\approx \frac{1}{2} \times 3 \times \left(\sqrt[3]{8} + 2\left(\sqrt[3]{11} + \sqrt[3]{14}\right) + \sqrt[3]{17}\right)$	B1		State or imply at least 3 of the 4 correct y-coords, and no others
	20.0	M1		Use correct trapezium rule, any <i>h</i> , to find area between $x = 1$ and $x = 10$
	≈ 20.8			
		M1		Correct <i>h</i> (soi) for their <i>y</i> -values – must be at equal intervals
		<u>A1</u>	4	Obtain 20.8 (allow 20.7)
(ii)	use more strips / narrower strips	B1	1	Any mention of increasing n or decreasing h
			5	
3 (i)	$(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$	B1		Obtain $1 + 5x$
		M1		Attempt at least the third (or fourth) term of the binomial expansion, including coeffs
		A1		Obtain $11.25x^2$
		A1		Obtain $15x^3$
			4	
(ii)	coeff of $x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ = 100	M1		Attempt at least one relevant term, with or without powers of x
		A1 ft		Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved
				01
		A1	3	Obtain 100

4 (i)	$u_1 = 6, u_2 = 11, u_3 = 16$	B1	1	State 6, 11, 16
(ii)	$S_{40} = {}^{40}/_2 (2 \ge 6 + 39 \ge 5)$ = 4140	M1		Show intention to sum the first 40 terms of a sequence
		M1		Attempt sum of their AP from (i), with $n = 40$, $a =$ their u_1 and $d =$ their $u_2 - u_1$
		A1	3	Obtain 4140
(iii)	$w_3 = 56$ $5n + 1 = 56$ or $6 + (n - 1) \ge 5 = 56$	B1		State or imply $w_3 = 56$
	p = 11	M1		Attempt to solve $u_p = k$
		A1	3	Obtain $p = 11$
			7	
5 (i)	$\frac{\sin\theta}{8} = \frac{\sin 65}{11}$	M1		Attempt use of correct sine rule
	$\theta = 41.2^{\circ}$	A1	2	Obtain 41.2°, or better
(ii) a	$180 - (2 \ge 65) = 50^{\circ} \text{ or } 65 \ge \pi^{\pi}/_{180} = 1.134$ 50 \example \pi/_{180} = 0.873 A.G. \pi - (2 \example 1.134) = 0.873	M1		Use conversion factor of $\pi/180}$
		A1	2	Show 0.873 radians convincingly (AG)
(ii) b	area sector = $\frac{1}{2} \times 8^2 \times 0.873 = 27.9$ area triangle = $\frac{1}{2} \times 8^2 \times \sin 0.873 = 24.5$	M1		Attempt area of sector, using $(\frac{1}{2}) r^2 \theta$
	area segment = $27.9 - 24.5$ = 3.41	M1		Attempt area of triangle using $(\frac{1}{2}) r^2 \sin \theta$
		M1		Subtract area of triangle from area of sector
		A1	4	Obtain 3.41or 3.42
			8	

6 a	$\int_{-\infty}^{5} (x^{2} + 4x) dx = \left[\frac{1}{3}x^{3} + 2x^{2}\right]_{3}^{5}$	M1		Attempt integration
	$=(^{125}/_3+50)-(9+18)$	A1		Obtain $\frac{1}{3}x^3 + 2x^2$
	$= 64^{2}/_{3}$	M1		Use limits $x = 3$, 5 – correct order & subtraction
		A1	4	Obtain 64 $^{2}/_{3}$ or any exact equiv
b	$\int (2 - 6\sqrt{y}) dy = 2y - 4y^{\frac{1}{2}} + c$	B1		State 2 <i>y</i>
		M1		Obtain $ky^{\frac{3}{2}}$
		A1	3	Obtain $-4y^{\frac{3}{2}}$ (condone absence of $+c$)
с	$\int_{0}^{\infty} 8x^{-3} dx = \left[\frac{-4}{x^{2}}\right]_{1}^{\infty}$	B1		State or imply $\frac{1}{x^3} = x^{-3}$
	=(0)-(-4)	M1		Attempt integration of kx^n
	= 4	A1		Obtain correct $-4x^{-2}$ (+ <i>c</i>)
		A1 ft	4	Obtain 4 (or $-k$ following their kx^{-2})
			11	
7 (i)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x}$	M1	11	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$
7 (i)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$	M1 A1	<u>11</u> 2	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly.
7 (i) (ii)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$	M1 A1 B1	2	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation
7 (i) (ii)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$ $x = -3$	M1 A1 B1 M1	2	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in $\tan x$
7 (i) (ii)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$ $x = 63.4^\circ, 243^\circ x = 108^\circ, 288^\circ$	M1 A1 B1 M1 A1	2	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in $\tan x$ Obtain 2 and -3 as roots of their quadratic
7 (i) (ii)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$ $x = 63.4^\circ, 243^\circ x = 108^\circ, 288^\circ$	M1 A1 B1 M1 A1 M1	2	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in $\tan x$ Obtain 2 and -3 as roots of their quadratic Attempt to solve $\tan x = k$ (at least one root)
7 (i) (ii)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$ $x = 63.4^\circ, 243^\circ x = 108^\circ, 288^\circ$	M1 A1 B1 M1 A1 M1 A1ft	2	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in $\tan x$ Obtain 2 and -3 as roots of their quadratic Attempt to solve $\tan x = k$ (at least one root) Obtain at least 2 correct roots
7 (i) (ii)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$ $x = 63.4^\circ, 243^\circ x = 108^\circ, 288^\circ$	M1 A1 B1 M1 A1 M1 A1ft A1	<u>11</u> 2 6	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in $\tan x$ Obtain 2 and -3 as roots of their quadratic Attempt to solve $\tan x = k$ (at least one root) Obtain at least 2 correct roots Obtain all 4 correct roots

8 a	$\log 5^{3w-1} = \log 4^{250}$	M1*		Introduce logarithms throughout
	$(3w-1)\log 5 = 250 \log 4$	M1*		Use $\log a^b = b \log a$ at least once
	$3w - 1 = \frac{2500g^2}{\log 5}$ $w = 72.1$	A1		Obtain $(3w - 1)\log 5 = 250 \log 4$ or equiv
		M1d*		Attempt solution of linear equation
		A1	5	Obtain 72.1, or better
b	$\log_x \frac{5y+1}{3} = 4$	M1		Use $\log a - \log b = \log a/b$ or equiv
	$\frac{5y+1}{3} = x^4$	M1		Use $f(y) = x^4$ as inverse of $\log_x f(y) = 4$
	$5y + 1 = 3x^4$	M1		Attempt to make y the subject of $f(y) = x^4$
	$y = \frac{3x^2 - 1}{5}$	A1	4	Obtain $y = \frac{3x^4 - 1}{5}$, or equiv
			9	
9 (i)	$ar = a + d$, $ar^3 = a + 2d$ $2ar - ar^3 = a$	M1		Attempt to link terms of AP and GP, implicitly or explicitly.
	$ar^{3}-2ar+a=0$ $r^{3}-2r+1=0$ A.G.	M1		Attempt to eliminate <i>d</i> , implicitly or explicitly, to show given equation.
		<u>A1</u>	3	Show $r^3 - 2r + 1 = 0$ convincingly
(ii)	$f(r) = (r-1)(r^2 + r - 1)$	B1		Identify $(r-1)$ as factor or $r = 1$ as root
	$r = -1 \pm \sqrt{5}$	M1*		Attempt to find quadratic factor
	$r = \frac{1}{2}$	A1		Obtain $r^2 + r - 1$
	Hence $r = \frac{-1+\sqrt{3}}{2}$	M1d*		Attempt to solve quadratic
		A1	5	Obtain $r = \frac{-1+\sqrt{5}}{2}$ only
(iii)	$\frac{a}{1-r} = 3 + \sqrt{5}$	M1		Equate S_{∞} to $3 + \sqrt{5}$
	$a = (\frac{3}{2} - \frac{\sqrt{5}}{2})(3 + \sqrt{5})$	A1		Obtain $\frac{a}{1 - \left(\frac{-1 + \sqrt{5}}{2}\right)} = 3 + \sqrt{5}$
	$a = \frac{9}{2} - \frac{5}{2}$ a = 2	M1		Attempt to find <i>a</i>
		A1	4	Obtain $a = 2$
			12	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Mathematics

Advanced GCE 4723

Core Mathematics 3

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

1	(i)	Attempt use of product rule Obtain $3x^2e^{2x} + 2x^3e^{2x}$	M1 producing $\dots + \dots$ form A1 2 or equiv
	(ii)	Attempt use of chain rule to produce $\frac{kx}{3+2x^2}$ form Obtain $\frac{4x}{3+2x^2}$	M1 any constant <i>k</i> A1 2
	(iii)	Attempt use of quotient rule Obtain $\frac{2x+1-2x}{(2x+1)^2}$ or $(2x+1)^{-1} - 2x(2x+1)^{-2}$	M1 or equiv; condone u/v confusions A1 2 or (unsimplified) equiv
	[If ig	(2x+1) +c included in all three parts and all three parts otherwise more any inclusion of+c.]	ise correct, award M1A1, M1A1, M1A0; otherwise
2	(i)	Obtain one of $\pm \ln(\pm x \pm 4)$ Obtain correct equation $y = -\ln(x-4)$	M1 A1 2 or equiv; condone use of modulus signs instead of brackets
	(ii)	State, in any order, S, S and T State T, then S, then S	 M1 or equiv such as S², T or 2S, T A1 2 or equiv (note that S, S, T⁹ and S, T³, S are alternative correct answers)
3	(i)	Use $\csc \theta = \frac{1}{\sin \theta}$ Attempt to express equation in terms of $\sin \theta$ Obtain or clearly imply $6\sin^2 \theta - 11\sin \theta - 10 = 0$	B1 M1 using $\cos 2\theta = \pm 1 \pm 2 \sin^2 \theta$ or equiv A1 3 or $-6 \sin^2 \theta + 11 \sin \theta + 10 = 0$
	(ii)	Attempt solution to obtain at least one value of $\sin \theta$ Obtain -41.8 Obtain -138	M1 should be $s = -\frac{2}{3}, \frac{5}{2}$ A1 allow -42 or greater accuracy A1 3 or greater accuracy; and no others between -180 and 180
_		[Answer(s) only: award 0 out of 3.]	6

4	(i)	Either:	: Integrate to obtain $k \ln x$ Use at least one relevant logarithm property	B1 M1	
			Obtain $k \ln 3 = \ln 81$ and hence $k = 4$	A1 .	3 AG; accurate work required
		<u>Or 1</u> :	(where solution involves no use of a logarithm pro Integrate to obtain $k \ln x$ Obtain correct explicit expression for k and	operty) B1	
			conclude $k = 4$ with no error seen	B2 🤅	3 AG; e.g. $k = \frac{\ln 81}{\ln 6 - \ln 2} = 4$
		<u>Or 2</u> :	(where solution involves verification of result by	initial	substitution of 4 for <i>k</i>)
			Integrate to obtain $4 \ln x$	B1	
			Obtain ln 81 legitimately with no error seen	A1	3 AG; accurate work required
	(ii)	State v	volume involves $\int \pi(\frac{4}{x})^2 dx$	B1	possibly implied
		Obtain	n integral of form $k_1 x^{-1}$	M1	any constant k_1 including π or not
		Use co	prrect process for finding volume produced from S	M1	$\int (k_2 2^2 - k_3 y^2) dx$, including π or not with correct limits indicated: or equiv
		Obtain	$16\pi - \frac{16}{2}\pi$ and hence $\frac{32}{2}\pi$	A1 4	4 or exact equiv
			5 5	7	
5	(i)	Attem	pt process for finding both critical values	M1	squaring both sides to obtain 3 terms on each side or considering 2 different linear eans/inequalities
		Obtain	1 –4	A1	edus, medamines
		Obtain	$1 \frac{2}{3}$	A1	
		Attem	pt process for solving inequality	M1	table, sketch,; needs two critical values; implied by plausible answer
		Obtain	$1 -4 \le x \le \frac{2}{3}$	A1 :	5 with \leq and not $<$
	(11)	Use co	prrect process to find value of $ x+2 $ using any value	ie MI	whether part of answer to (1) or not
		Obtain	$12\frac{2}{3}$ or $\frac{8}{3}$	A1 2	2 dependent on 5 marks awarded in part (i)
				7	

June 2010

6	(i)	Attempt calculations involving 1.0 and 1.1 Obtain -0.57 and 0.76	M1 A1		using radians or values to 1 dp (rounded or truncated); or equivs (where eqn rearranged)	
		Refer to sign change (or equiv for rearranged eqn)	A1	3	AG; following correct work only	
	(ii)	Obtain correct first iterate	B1		using value x_1 such that $1.0 \le x_1 \le 1.1$	
		Carry out iteration process	M1		obtaining at least 3 iterates in all so far	
		Obtain at least 3 correct iterates	A1		showing at least 3 dp	
		$\begin{array}{c} \text{Obtain } 1.05083 \\ 1 \longrightarrow 1.047198 \longrightarrow 1.050571 \longrightarrow 1.050809 \longrightarrow 1 \end{array}$	A1	4 226	answer required to exactly 5 d.p. \rightarrow 1.050827:	
		$\begin{array}{c} 1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827 - \\ 1.1 \rightarrow 1.054268 \rightarrow 1.051070 \rightarrow 1.050844 \rightarrow \end{array}$	→ 1.050820 → 1.050827 ; → 1.050829 → 1.050827]			
	 (iii)	State or imply $\sec^2 2x = 1 + \tan^2 2x$	B1			
		Relate to earlier equation	M1		by halving or doubling answer to (ii) or carrying out equivalent iteration process	
		Deduce $2x = 1.05083$ and hence 0.525	A1 ⁻	√3	following their answer to (ii); or greater accuracy	
		[SC: Rearrange to obtain $x = \frac{1}{2}\cos^{-1}(2x+3)^{-\frac{1}{2}}$	B1			
		Use iterative process to obtain 0.525	B1 10	2	or greater accuracy]	
7		Differentiate to obtain $k_1(3x-1)^3$	M1		any constant k_1	
		Obtain correct $12(3x-1)^3$	A1		or (unsimplified) equiv	
		Substitute 1 to obtain 96	A1			
		Attempt to find x-coordinate of Q	MI		using tangent with $y = 0$ or using gradient	
		Obtain $\frac{3}{6}$	A1		or exact equiv	
		Integrate to obtain $k_2(3x-1)^5$	M1		any constant k_2	
		Obtain correct $\frac{1}{15}(3x-1)^5$	A1		or (unsimplified) equiv	
		Use limits $\frac{1}{2}$ and 1 to obtain $\frac{32}{15}$	A1			
		Attempt to find shaded area by correct process	M1		integral – triangle or equiv	
		Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16 \text{ and hence}) \frac{4}{5}$	A1		or equiv	
			10			
0		Obtain $D = 2\sqrt{2}$ on $D = \sqrt{18}$ on $D = 4.24$	D1			
0	(1)	Attempt to find value of α	M1		condone sin/cos muddles and degrees	
		Obtain $\frac{1}{2}\pi$ or 0.785	A1	3	in radians now	
	(ii) a	a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution				
		of $3\cos x + 3\sin x = 0$	M1		condone degrees here	
		Obtain $\frac{3}{4}\pi$	A1	2	or, $-\frac{5}{4}\pi$, $-\frac{1}{4}\pi$, $\frac{7}{4}\pi$,; in radians now	
	-	b Attempt correct process to find value of $3x - \alpha$	*M	 1	with attempt at rearranging $T(3x) = \frac{8}{9}\sqrt{6}$	
		Obtain at least one correct exact value of $3x - \alpha$	A1		$\pm \frac{1}{4}\pi, \pm \frac{11}{4}\pi,$	
		Attempt at least one positive value of x	M1		dep *M	
		Obtain $\frac{1}{36}\pi$	A1	4	··· r -	
		50	9			

4723

9	(i)	Attemp Obtain State f	to to find x-coord of staty point or complete square $(\frac{3}{2}, -9)$ or $4(x-\frac{3}{2})^2 - 9$ or -9 $f(x) \ge -9$	M1 A1 A1	3	or equiv using any notation; with \geq	
	(ii)	Make of	one correct (perhaps general) relevant statement	B1 no		not 1 – 1, f is many-one,; maybe implied if attempt is specific to this f	
		Conclu	Conclude with correct evidence related to this f		2	AG; (more or less) correct sketch; correct relevant calculations,	
	(iii)	Either:	Attempt to find expression for g^{-1}	 *M	 1	or equiv	
			Obtain $\frac{1}{a}(x-b)$	A1		or equiv	
			Compare $\frac{1}{a}(x-b)$ and $ax+b$	M1		dep *M; by equating either coefficients of x	
			-			or constant terms (or both); or substituting two non-zero values of x and solving eqns for a	
			Obtain at least $-\frac{b}{a} = b$ and hence $a = -1$	A1	4	AG; necessary detail required; or equiv	
			[SC1: first two steps as above, then substitute $a =$	-1:1	ma	x possible M1A1B1]	
			[SC2: substitute $a = -1$ at start: Attempt to find in	nvers	se I	M1 Obtain $-x+b$ and conclude A1 2]	
		<u>Or</u> :	State or imply that $y = g^{-1}(x)$ is reflection	DI			
			of $y = g(x)$ in line $y = x$	BI			
			State that line unchanged by this reflection is perpendicular to $y = x$	М2			
			Conclude that a is -1	A1	4		
	(iv)	State of	r imply that $gf(x) = -(4x^2 - 12x) + b$	 В1			
		Attemp	ot use of discriminant or relate to range of f	M1		or equiv	
		Obtain	64 + 16b < 0 or 9 + b < 5	A1		or equiv	
		Obtain	<i>b</i> < -4	AI 13	4		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

Mathematics

Advanced GCE 4724/01

Core Mathematics 4

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Mark Scheme

June 2010

Mark Scheme

June 2010

4		Att by diff to connect dx & du or find $\frac{dx}{du}$ or $\frac{du}{dx}$ (not $dx=du$	<u>ı)</u> M1	no accuracy; not 'by parts'
		$dx = 2u du$ or $\frac{du}{dx} = \frac{1}{2}(x+2)^{-\frac{1}{2}}$ AEF	A1	
		Indefinite integral $\rightarrow \int 2(u^2 - 2)^2 (\frac{u}{u})(du)$	A1	May be implied later
		{If relevant, cancel u/u and} attempt to square out	M1	
		{dep $\int kI(du)$ where $k = 2$ or $\frac{1}{2}$ or 1 and $I = (u^2 - 2)^2$ or	$r\left(2-u^2\right)$	$(u^{2}+2)^{2}$ or $(u^{2}+2)^{2}$
		Att to change limits if working with $f(u)$ after integration	M1	or re-subst into integral attempt and use $-1 \& 7$
		Indefiniteg = $\frac{2}{5}u^5 + \frac{8}{3}u^3 + 8u$ or $\frac{1}{10}u^5 + \frac{2}{3}u^3 + 2u$	A1	or $\frac{1}{5}u^5 + \frac{4}{3}u^3 + 4u$
		$\frac{652}{15}$ or $43\frac{7}{15}$ ISW but no '+c'	A1	
			7	
5		$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$ s.o.i.	B1	Implied by e.g., $4x \frac{dy}{dx} + y$
		$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^{2}\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
		Diff eqn(=0 can be implied)(solve for $\frac{dy}{dx}$ and) put $\frac{dy}{dx} = 0$) M1	
		Produce <u>only</u> $2x + 4y = 0$ (though AEF acceptable)	*A1	without any error seen
		Eliminate x or y from curve eqn & eqn(s) just produced	M1	
		Produce either $x^2 = 36$ or $y^2 = 9$ dep	*A1	Disregard other solutions
		$(\pm 6, \mp 3)$ AEF, as the only answer ISW dep	* A1	Sign aspect must be clear
			7	
6	(i)	State/imply scalar product of any two vectors $= 0$	M1	
		Scalar product of correct two vectors = $4 + 2a - 6$	A1	$(4+2a-6=0 \rightarrow M1A1)$
		$\underline{a=1}$	A1 3	
	(ii)	(a) Attempt to produce at least two relevant equations	M1	e.g. $2t = 3 + 2s \dots$
		Solve two not containing 'a' for s and t	M1	
		Obtain at least one of $s = -\frac{1}{2}$, $t = 1$	A1	
		Substitute in third equation & produce $\underline{a = -2}$	A1 4	
		(b) Method for finding magnitude of <u>any</u> vector	M1	possibly involving 'a'
		Using $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ for the pair of direction vectors	M1	possibly involving 'a'
		<u>107, 108 (107.548) or 72, 73, 72.4, 72.5 (72.4516)</u> c.a.o.	A1 3	1.87, 1.88 (1.87707) or 1.26

Mark Scheme

June 2010

7	(i)	Differentiate x as a quotient, $\frac{v du - u dv}{v^2}$ or $\frac{u dv - v du}{v^2}$	M1	or product clearly defined
		$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{(t+1)^2}$ or $\frac{-1}{(t+1)^2}$ or $-(t+1)^{-2}$	A1	WWW $\rightarrow 2$
		$\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{2}{(t+3)^2}$ or $\frac{-2}{(t+3)^2}$ or $-2(t+3)^{-2}$	B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1	quoted/implied and used
		$\frac{dy}{dx} = \frac{2(t+1)^2}{(t+3)^2} \text{or} \frac{2(t+3)^{-2}}{(t+1)^{-2}} \qquad (\text{dep } 1^{\text{st}} 4 \text{ marks})$	*A1	ignore ref $t = -1, t = -3$
		State <u>squares</u> +ve or $(t+1)^2$ & $(t+3)^2$ + ve $\therefore \frac{dy}{dx}$ +ve dep	*A1 6	or $\left(\frac{t+1}{t+3}\right)^2$ + ve. Ignore ≥ 0
	(ii)	Attempt to obtain t from either the x or y equation	M1	No accuracy required
		$t = \frac{2-x}{x-1}$ AEF <u>or</u> $t = \frac{2}{y} - 3$ AEF	A1	
		Substitute in the equation not yet used in this part	M1	or equate the 2 values of <i>t</i>
		Use correct meth to eliminate ('double-decker') fractions	M1	
		Obtain $2x + y = 2xy + 2$ ISW AEF	A1 5	but not involving fractions 11
8	(i)	Long division method		Identity method
		Evidence of division process as far as 1 st stage incl sub	M1	$\equiv Q(x-1) + R$
		(Quotient =) x - 4	Al	Q = x - 4
		(Remainder =) 2 ISW	A1 3	R = 2; N.B. might be B1
	(ii)	(a) Separate variables; $\int \frac{1}{y-5} dy = \int \frac{x^2 - 5x + 6}{x-1} dx$	M1	$\int \int dt $
		Change $\frac{x^2 - 5x + 6}{x - 1}$ into their (Quotient + $\frac{\text{Rem}}{x - 1}$)	M1	
		$\ln(y-5) = \sqrt{(\text{integration of their previous result)} (+c)}$ ISW	√A1 3	f.t. if using Quot + $\frac{\text{Rem}}{x-1}$
	(ii)	(b) Substitute $y = 7$, $x = 8$ into their eqn containing 'c'	M1	& attempt 'c' $(-3.2, \ln \frac{2}{49})$
		Substitute $x = 6$ and their value of 'c'	M1	& attempt to find <i>y</i>
		<u>$y = 5.00$ (5.002529)</u> Also $5 + \frac{50}{49}e^{-6}$	A2 4	Accept 5, 5.0,

Beware: any wrong working anywhere \rightarrow A0 even if answer is one of the acceptable ones.

10

June 2010

9(i)	Attempt to multiply out $(x + \cos 2x)^2$	M1	Min of 2 correct terms
	<u>Finding</u> $\int 2x \cos 2x dx$		
	Use $u = 2x$, $dv = \cos 2x$	M1	1 st stage $f(x) + / - \int g(x) dx$
	1^{st} stage $x \sin 2x - \int \sin 2x dx$	A1	
	$\therefore \int 2x \cos 2x \mathrm{d}x = x \sin 2x + \frac{1}{2} \cos 2x$	A1	
	<u>Finding</u> $\int \cos^2 2x dx$		
	Change to $k \int + \frac{1}{-1} + \frac{1}{-\cos 4x} dx$	M1	where $k = \frac{1}{2}$, 2 or 1
	Correct version $\frac{1}{2}\int 1 + \cos 4x dx$	A1	
	$\int \cos 4x \mathrm{d}x = \frac{1}{4} \sin 4x$	B1	seen anywhere in this part
	$\text{Result} = \frac{1}{2}x + \frac{1}{8}\sin 4x$	A1	
	(i) ans $=\frac{1}{3}x^3 + x\sin 2x + \frac{1}{2}\cos 2x + \frac{1}{2}x + \frac{1}{8}\sin 4x$ (+ c)	A1 9	Fully correct
(ii)	$V = \pi \int_{0}^{\frac{1}{2}\pi} (x + \cos 2x)^2 (dx)$	M1	
	Use limits 0 & $\frac{1}{2}\pi$ correctly on their (i) answer	M1	
	(i) correct value = $\frac{1}{24}\pi^3 - \frac{1}{2} + \frac{1}{4}\pi - \frac{1}{2}$	A1	
	Final answer = $\pi \left(\frac{1}{24} \pi^3 + \frac{1}{4} \pi - 1 \right)$	A1 4	c.a.o. No follow-through
		13	
Alternat	ive methods		

2 If $y = \frac{\cos x}{1 - \sin x}$ is changed into $y(1 - \sin x) = \cos x$, award M1 for clear use of the product rule (though possibly trig differentiation inaccurate) A1 for $-y \cos x + (1 - \sin x) \frac{dy}{dx} = -\sin x$ AEF B1 for reducing to a fraction with $1 - \sin x$ or $-\sin x + \sin^2 x + \cos^2 x$ in the numerator A1 for correct final answer of $\frac{1}{1 - \sin x}$ or $(1 - \sin x)^{-1}$ If $y = \frac{\cos x}{1 - \sin x}$ is changed into $y = \cos x(1 - \sin x)^{-1}$ award

If
$$y = \frac{\cos x}{1 - \sin x}$$
 is changed into $y = \cos x(1 - \sin x)^{-1}$, award
M1 for clear use of the product rule (though possibly trig differentiation inaccurate)
A1 for $\left(\frac{dy}{dx}\right) = \cos^2 x(1 - \sin x)^{-2} + (1 - \sin x)^{-1} - \sin x$ AEF

B1 for reducing to a fraction with $1-\sin x$ or $-\sin x + \sin^2 x + \cos^2 x$ in the numerator

A1 for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$

- 6(ii)(a) If candidates use some long drawn-out method to find 'a' instead of the direct route, allow
 - M1 as before, for producing the 3 equations
 - M1 for any satisfactory method which will/does produce 'a', however involved
 - A<u>2</u> for a = -2
- 7(ii) Marks for obtaining this Cartesian equation are not available in part (i).

If part (ii) is done first and then part (i) is attempted using the Cartesian equation, award marks as follow:

Method 1 where candidates differentiate implicitly

- M1 for attempt at implicit differentiation
- A1 for $\frac{dy}{dx} = \frac{2y-2}{1-2x}$ AEF
- M1 for substituting parametric values of x and y
- A2 for simplifying to $\frac{2(t+1)^2}{(t+3)^2}$
- A1 for finish as in original method

Method 2 where candidates manipulate the Cartesian equation to find x =or y =

- M1 for attempt to re-arrange so that either y = f(x) or x = g(y)
- A1 for correct $y = \frac{2-2x}{1-2x}$ AEF or $x = \frac{2-y}{2-2y}$ AEF
- M1 for differentiating as a quotient
- A2 for obtaining $\frac{dy}{dx} = \frac{2}{(1-2x)^2}$ or $\frac{(2-2y)^2}{2}$
- A1 for finish as in original method

8(ii)(b) If definite integrals are used, then

M2 for $\begin{bmatrix} \end{bmatrix}_{v}^{7} = \begin{bmatrix} \end{bmatrix}_{6}^{8}$ or equivalent

or M1 for $\begin{bmatrix} \\ \end{bmatrix}_7^y = \begin{bmatrix} \\ \end{bmatrix}_6^8$ or equivalent

A2 for 5, 5.0, 5.00 (5.002529) with caveat as in main scheme dep M2

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

GCE

Mathematics

Advanced GCE 4725

Further Pure Mathematics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

4725	Mark So	cheme	June 2010	
1		B1 M1 M1 A1 A1 5	Establish result true for $n = 1$ or $n = 2$ Add next term to given sum formula Attempt to factorise or expand and simplify to correct expression Correct expression obtained Specific statement of induction conclusion	
2 (i)	(-7)	M1 A1 2	Obtain a single value Obtain correct answer as a matrix	
(ii)	$\mathbf{BA} = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$	M1 A1	Obtain a 2 × 2 matrix All elements correct	
	$\begin{pmatrix} -7 & -20\\ 11 & -20 \end{pmatrix}$	B1	4C seen or implied by correct answer	
		B1ft 4	Obtain correct answer, ft for a slip in BA	
		6		
3	Either	M1 M1	Express as a sum of 3 terms Use standard sum results	
	$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$	A1	Correct unsimplified answer	
		M1 A1	Attempt to factorise Obtain at least factor of <i>n</i> and a quadratic	
	$\frac{1}{3}n(2n-1)(2n+1)$ Or	A1 6	Obtain correct answer a.e.f.	
	$\sum_{n=1}^{2n} r^2 - 4 \sum_{n=1}^{n} r^2$	M1	Express as difference of 2 $\sum r^2$ series	
	r=1 r=1	M1	Use standard result	
	$\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6}n(n+1)(2n+1)$	A1 M1 A1	Correct unsimplified answer Attempt to factorise Obtain at least factor of <i>n</i>	
	$\frac{1}{3}n(2n-1)(2n+1)$	A1	Obtain correct answer	
		6		

4	(i)	5 + 12i 13 67.4° or 1.18	B1B1 B1ft B1ft 4	Correct real and imaginary parts Correct modulus Correct argument
	(ii)		M1 A1	Multiply by conjugate Obtain correct numerator
		$-\frac{11}{85}-\frac{27}{85}$ i	A1 3	Obtain correct denominator
			7	
5	(a)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	B1B1 2	Each column correct SC B2 use correct matrix from MF1 Can be trig form
	(b)	(i) (ii)	B1B1 2 B1B1 2	Stretch, in x-direction sf 5 Rotation, 60° clockwise
			6	
6	(i)	(a) (b)	B1B1 2 B1B1 2	Circle centre $(3, -4)$, through origin Vertical line, clearly $x = 3$
	(ii)		B1ft B1ft 2	Inside their circle And to right of their line, if vertical
			6	

June 2010

- 7
- Either $\alpha + \beta = -2k \quad \alpha\beta = k$
 - $y^2 4ky + 4k = 0$

0r

 $\alpha + \beta = -2k$ $\frac{-2k}{\alpha}$ $y = \frac{-2k}{x}$

 $y^2 - 4ky + 4k = 0$

0r

$$-k \pm \sqrt{k^2 - k}$$
$$\frac{\alpha + \beta}{\alpha} = \frac{2k}{k + \sqrt{k^2 - k}}, \frac{\alpha + \beta}{\beta} = \frac{2k}{k - \sqrt{k^2 - k}}$$

 $y^2 - 4ky + 4k = 0$

- B1B1 State or use correct results M1 Attempt to find sum of new roots Obtain 4k A1 Attempt to find product of new roots M1 A1 Obtain 4k B1ft 7 Correct quadratic equation a.e.f. B1 State or use correct result State or imply form of new roots **B**1 **B**1 State correct substitution M1 Rearrange and substitute for xCorrect unsimplified equation A1 M1 Attempt to clear fractions A1 Correct quadratic equation a.e.f. **B**1 Find roots of original equation B1 Express both new roots in terms of k
 - M1 Attempt to find sum of new roots
 - A1 Obtain 4k
 - M1 Attempt to find product of new roots
 - A1 Obtain 4*k*
 - B1ft Correct quadratic equation a.e.f.

7

4	4725	Mark Sci	heme		June 2010		
8	(i)		M1 A1	2	Attempt to rationalise denominator or cross multiply Obtain given answer correctly		
	(ii)		M1		Express terms as differences using (i)		
			M1		Attempt this for at least 1 st three terms		
					I ast two terms all correct		
			M1		Show pairs cancelling		
		$\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$	A1	6	Obtain correct answer, in terms of n		
	(
	(111)		BI	1 9	Sensible statement for divergence		
				_			
9	(i)		M1		Show correct expansion process for 3 x 3		
			M1	_	Correct evaluation of any 2 x 2		
		$\det \mathbf{A} = a^2 - a$	A1	3	Obtain correct answer		
	(ii)	(a)	M1		Find a pair of inconsistent		
			Δ1		equations State inconsistent or no solutions		
		(b)	M1		Find a repeated equation		
			A1		State non unique solutions		
		(c)	B1		State that det A is non-zero or find correct solution		
			B1	6	State unique solution		
					SC if detA incorrect, can score 2 marks		
				Б	for correct deduction of a unique solution, but only once		
				9	solution, but only once		
10	(i)		M1		Attempt to equate real and imaginary parts		
		$r^2 - v^2 = 3$ $rv = 2$	A1		Obtain both results		
		x = y = 5 $xy = 2$	M1		Eliminate to obtain quadratic in x^2 or y^2		
			M1	_	Solve to obtain x or y value		
		z = 2 + 1	AI	5	Obtain correct answer as a complex no.		
	(ii)		B1	1	Obtain given answer correctly		
	(iii)		M1		Attempt to solve quadratic equation		
	(111)	$w^3 = 2 \pm 11 i$	Al		Obtain correct answers		
			M1		Choose negative sign		
			M1	_	Relate required value to conjugate of (i)		
		w = 2 - 1	AI	5 11	Obtain correct answer		
OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Mathematics

Advanced GCE 4726

Further Pure Mathematics 2

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

- 1 Derive/quote $g'(x) = p/(1+x^2)$ Attempt f'(x) as $a/(1+bx^2)$ Use $x = \frac{1}{2}$ to set up a solvable equation in *p*, leading to at least one solution Get $p = \frac{5}{4}$ only
- 2 Reasonable attempt at $e^{2x} (1+2x+2x^2)$ Multiply out their expressions to get all terms up to x^2 Get $1+3x+4x^2$ Use binomial, equate coefficients to get 2 solvable equations in *a* and *n* Reasonable attempt to eliminate *a* or *n* Get *n*=9, *a*= $\frac{1}{3}$ cwo
- 3 Quote/derive correct $dx=2dt/(1+t^2)$ Replace all x (not dx=dt) Get 2/(t-1)² or equivalent Reasonable attempt to integrate their expression Use correct limits in their correct integral Clearly tidy to $\sqrt{3}+1$ from cwo
- 4 (i) Get a = -2Get b = 6Get c = 1

B1 M1 Allow any $a, b=2$ or 4
M1 A1 AEEF
M1 3 terms of the form $1+2x+ax^2$, $a \neq 0$
M1 (3 terms) x (minimum of 2 terms) A1 cao Reasonable attempt at binomial each term
M1 involving <i>a</i> and <i>n</i> (<i>an</i> =3, $a^2n(n-1)/2=4$) M1 A1 cao
SC Reasonable $f'(x)$ and $f''(x)$ using product rule (2 terms) M1 Use their expressions to find f'(0) and $f''(0)$ M1 Get $1+3x+4x^2$ cao A1
B1 M1 From their expressions A1
M1 al A1 $$ Must involve $\sqrt{3}$ A1 A.G.
B1 May be quoted B1 May be quoted B1 May be quoted (from correct working) B1 May be quoted

B1 Correct shape in $-1 < x \le 3$ only (allow just top or bottom half)

B1 90⁰ (at x=3) (must cross x-axis i.e. symmetry)

B1 Asymptote at x = -1 only (allow -1 seen)

B1 $\sqrt{}$ Correct crossing points; $\pm \sqrt{(b/c)}$ from their *b,c*

1

5 (i) Reasonable attempt at parts M1 Leading to second integral A1 Or $(1-2x)^{n+1}/(-2(n+1))e^x$ Get $e^{x}(1-2x)^{n} - \int e^{x} n(1-2x)^{n-1} - 2 dx$ $-\int (1-2x)^{n+1}/(-2(n+1))e^{x}dx$ Evidence of limits used in integrated part M1 Should show ± 1 A1 Allow $I_{n+1} = 2(n+1)I_n - 1$ Tidy to A.G. (ii) Show any one of $I_3=6I_2-1$, $I_2=4I_1-1$, $I_1 = 2I_0 - 1$ B1 May be implied Get $I_0(=e^{\frac{1}{2}}-1)$ or $I_1(=2e^{\frac{1}{2}}-3)$ **B**1 Substitute their values back for their I_3 M1 Not involving *n* Get $48e^{\frac{1}{2}}$ - 79 A1 6 (i) Reasonable attempt to differentiate M1 Allow $\pm \cosh y \, dy/dx = 1$ $\sinh y = x$ to get dy/dx in terms of y A1 Clearly use $\cosh^2 - \sinh^2 = 1$ Replace sinh *y* to A.G. SC Attempt to diff. $y = \ln(x + \sqrt{x^2 + 1})$ using chain rule M1 Clearly tidy to A.G. A1 (ii) Reasonable attempt at chain rule M1 To give a product Get $dy/dx = a \sinh(a\sinh^{-1}x)/\sqrt{(x^2+1)}$ A1 Reasonable attempt at product/quotient M1 Must involve sinh and cosh A1 $\sqrt{\text{From } dy/dx} = k \sinh(a \sinh^{-1}x)/\sqrt{(x^2+1)}$ Get $d^2 v/dx^2$ correctly in some form Substitute in and clearly get A.G. A1 SC Write $\sqrt{(x^2+1)}dy/dx = k \sinh(a\sinh^{-1}x)$ or similar Derive the A.G. B1 $\sqrt{\text{Any 3}(\text{minimum})}$ correct from previous value **7** (i) Get 5.242, 5.239, 5.237 Get 5.24 B1 Allow one B1 for 5.24 seen if 2 d.p.used (ii) Show reasonable staircase for any region B1 Drawn curve to line Describe any one of the three cases **B**1 Describe all three cases **B**1 (iii) Reasonable attempt to use log/expo. rules M1 Allow derivation either way Clearly get A.G. A1 Attempt f'(x) and use at least once in correct N-R formula M1 Get answers that lead to 1.31 A1 Minimum of 2 answers; allow truncation/rounding to at least 3 d.p. (iv) Show $f'(\ln 36) = 0$ **B**1 Explain why N-R would not work B1 Tangent parallel to Ox would not meet Ox again or divide by 0 gives an error

B1 8 (i) Use correct definition of $\cosh x$ Attempt to cube their definition involving e^x and e^{-x} (or e^{2x} and e^x) M1 Must be 4 terms Put their 4 terms into LHS and attempt to simplify M1 Clearly get A.G. A1 SC Allow one B1 for correct derivation from $\cosh 3x = \cosh(2x+x)$ (ii) Rewrite as $k \cosh 3x = 13$ M1 M1 Allow $\pm \ln \operatorname{or} \ln(13/k \pm \sqrt{(13/k)^2 - 1})$ for their k Use ln equivalent on 13/kor attempt to set up and solve quadratic via exponentials Get $x = (\pm) \frac{1}{3} \ln 5$ A1 Replace in $\cosh x$ for uM1 Use $e^{a\ln b} = b^a$ at least once Get $\frac{1}{2}(5^{\frac{1}{3}} + 5^{-\frac{1}{3}})$ M1 A1 9 (i) Attempt integral as $k(2x+1)^{1.5}$ M1 Get 9 A1 cao M1 Their answer – triangle Attempt subtraction of areas A1 $\sqrt{}$ Their answer – 6 (>0) Get 3 (ii) Use $r^2 = x^2 + y^2$ and $x = r\cos\theta$, $y = r\sin\theta$ **B**1 Eliminate x and y to produce quadratic equation (=0) in $r (\text{or } \cos\theta)$ M1 Solve their quadratic to get r in terms of θ A1√ (or vice versa) Clearly get A.G. A1 r > 0 may be assumed Clearly show $\theta_1(at B) = \tan^{-1} \frac{3}{4}$ and θ_2 (at A) = π **B**1 SC Eliminate v to get r in terms of x only M1 Get r = x + 1A1 SC Start with $r=1/(1-\cos\theta)$ and derive cartesian (iii) Use area = $\frac{1}{2}\int r^2 d\theta$ with correct r B1 cwo; ignore limits Rewrite as $k \operatorname{cosec}^4(\frac{1}{2}\theta)$ M1 Not just quoted Equate to their part (i) and tidy M1 To get $\int =$ some constant Get 24 A1 A.G.

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Mathematics

Advanced GCE 4727

Further Pure Mathematics 3

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: Facsimile: E-mail: 0870 770 6622 01223 552610 publications@ocr.org.uk

1	Direction of $l_1 = k[7, 0, -10]$ Direction of $l_2 = k[1, 3, -1]$	B1	For both directions
	<i>EITHER</i> $\mathbf{n} = [7, 0, -10] \times [1, 3, -1]$	M1	For finding vector product of directions of l_1 and l_2
	$OR \begin{cases} [x, y, z] \cdot [7, 0, -10] = 0 \implies 7x - 10z = 0 \\ [x, y, z] \cdot [1, 3, -1] = 0 \implies x + 3y - z = 0 \end{cases}$		<i>OR</i> for using 2 scalar products and obtaining equations
	\Rightarrow n = k[10, -1, 7]	A1	For correct n
	METHOD 1		
	Vector $(\mathbf{a} - \mathbf{b})$ from l_1 to $l_2 = \pm [4, 6, -10]$	D1	For a correct vector
	$OR \pm [-4, 3, 1] OR \pm [3, 3, -9] OR \pm [-3, 6, 0]$	DI	For a confect vector
	$d = \frac{ (\mathbf{a} - \mathbf{b}) \cdot \mathbf{n} }{36} = \frac{36}{36}$	M1*	For finding $(\mathbf{a} - \mathbf{b}) \cdot \mathbf{n}$
	$ \mathbf{n} = \sqrt{150}$	M1 (*dep)	For $ \mathbf{n} $ in denominator <i>OR</i> for using $\hat{\mathbf{n}}$
	$d = \frac{6}{5}\sqrt{6} \approx 2.94$	A1 7	For correct distance AEF
	METHOD 2 Planes containing l_1 and l_2 perp. to n	M1*	For finding planes and $p_1 - p_2$ seen
	are $\mathbf{r} \cdot [10, -1, 7] = p_1 = 70$, $\mathbf{r} \cdot [10, -1, 7] = p_2 = 34$	B1	For $p_1 = 70k$ and $p_2 = 34k$
	$\Rightarrow d = \frac{ 70 - 34 }{\sqrt{150}} = \frac{36}{\sqrt{150}} = \frac{6}{5}\sqrt{6} \approx 2.94$	M1 (*dep)	For $ \mathbf{n} $ in denominator <i>OR</i> for using $\hat{\mathbf{n}}$
		A1	For correct distance AEF
	METHOD 3	DI	
	$\mathbf{r}_{1} = [7\lambda, 0, 10 - 10\lambda] OR [7 + 7\lambda, 0, -10\lambda]$	BI	For correct points on l_1 and l_2
	$\mathbf{r}_2 = [4 + \mu, 6 + 3\mu, -\mu] OR [3 + \mu, 3 + 3\mu, 1 - \mu]$		using different parameters
	$7\lambda + 10\alpha - \mu = 4 -3 3 -4 -\alpha - 3\mu = 6 6 6 3 3 3$	M1*	For setting up 3 linear equations from
	$-10\lambda + /\alpha + \mu = -10 0 -9 1$		$\mathbf{r}_1 + \alpha \mathbf{n} - \mathbf{r}_2$ and solving for α
	$\Rightarrow \alpha = -\frac{6}{25}$		
	$ \mathbf{n} = \sqrt{150}$	M1 (*dep)	For $ \mathbf{n} $ seen multiplying α
	$\Rightarrow d = \frac{6}{25}\sqrt{150} = \frac{6}{5}\sqrt{6} \approx 2.94$	A1	For correct distance AEF
		7	

4727

2 (i)	$ar = r^5 a \implies r ar = r^6 a$	M1	Pre-multiply $ar = r^5 a$ by r
	$r^6 = e \implies r a r = a$	A1 2	Use $r^6 = e$ and obtain answer AG
(ii)	METHOD 1		
	For $n = 1$, $r a r = a$ OR For $n = 0$, $r^0 a r^0 = a$	B1	For stating true for $n = 1$ <i>OR</i> for $n = 0$
	Assume $r^k a r^k = a$		
	<i>EITHER</i> Assumption $\Rightarrow r^{k+1}ar^{k+1} = rar = a$	M1	For attempt to prove true for $k + 1$
	$OR \ r^{k+1}ar^{k+1} = r.r^kar^k.r = rar = a$		
	$OR \ r^{k+1}ar^{k+1} = r^k .rar.r^k = r^k ar^k = a$	A1	For obtaining correct form
	Hence true for all $n \in \mathbb{Z}^+$	A1 4	For statement of induction conclusion
	METHOD 2		
	$r^2 a r^2 = r.rar.r = rar = a$, similarly for	M1	For attempt to prove for $n = 2, 3$
	$r^3 a r^3 = a$		
	$r^4ar^4 = r.r^3ar^3.r = rar = a,$	A1	For proving true for $n = 2, 3, 4, 5$
	similarly for $r^5 a r^5 = a$		
	$r^6 a r^6 = e a e = a$	B1	For showing true for $n = 6$
	For $n > 6$, $r^n = r^{n \mod 6}$, hence true for all $n \in \mathbb{Z}^+$	A1	For using <i>n</i> mod 6 and correct conclusion
	METHOD 3	10	
	$r^n a r^n = r^{n-1} . rar . r^{n-1}$	MI	Starting from <i>n</i> , for attempt to prove true for $n-1$
	$OR \ r^{n}ar^{n} = r^{n} \cdot r^{5}a \cdot r^{n-1} = r^{n+5}ar^{n-1}$. 1	
	$=r^{n-1}ar^{n-1}$	AI	For proving true for $n-1$
	$=r^{n-2}ar^{n-2}=\dots$	A1	For continuation from $n-2$ downwards
	= rar = a	B1	For final use of $rar = a$
	METHOD 4		SR can be done in reverse
	$a_{\mu} = \nu^5 a_{\mu} = \alpha \nu^2 = \nu^5 a_{\mu} = \nu^{10} a_{\mu}$	M1	For attempt to derive $a x^n - x^{5n} a$
	$ur = r \ u \Rightarrow ur = r \ ur = r \ u \text{ etc.}$	Al	For attempt to derive $ar = r - a$ For correct equation
	$\Rightarrow ar^n = r^{nn}a$		SR may be stated without proof
	$\Rightarrow r^n a r^n = r^{6n} a$	B1	For pre-multiplication by r^n
	= ea = a	A1	For obtaining a ($r^6 = e$ may be implied)
		6	

3			Allow $\operatorname{cis} \frac{k}{5}\pi$ and $\operatorname{e}^{\frac{k}{5}\pi i}$ throughout
(i)	$w^2 = \cos\frac{4}{5}\pi + i\sin\frac{4}{5}\pi$	B1	For correct value
	$w^3 = \cos\frac{6}{5}\pi + i\sin\frac{6}{5}\pi$	B1	For correct value
	$w^* = \cos\frac{2}{5}\pi - i\sin\frac{2}{5}\pi$	B1	For <i>w</i> * seen or implied
	$=\cos\frac{8}{5}\pi + i\sin\frac{8}{5}\pi$	B1 4	For correct value
			SR For exponential form with i missing, award B0 first time, allow others
(11)	$\lim_{1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	B1*	For $1 + w$ in approximately correct position
		B1 (*dep)	For $AB \approx BC \approx CD$
	$1+w+w^2+w^3$	B1	For BC, CD equally inclined to Im axis
		(*dep) B1 4	For <i>E</i> at the origin
	$-\frac{\sqrt{E}}{1+w+w^{2}+w^{3}+w^{4}} Re$		Allow points joined by arcs, or not joined Labels not essential
(iii)	$z^{5} - 1 = 0 \ OR \ z^{5} + z^{4} + z^{3} + z^{2} + z = 0$	B1 1	For correct equation AEF (in any variable)
		9	Anow factorised forms using w, exp of ting
A (1)	dy dz	D1	For correct differentiation of substitution
4 (1)	$y = xz \Rightarrow \frac{z}{dx} = z + x \frac{z}{dx}$	DI	For contect differentiation of substitution
	$\Rightarrow xz + x^2 \frac{dz}{dx} - xz = x \cos z \Rightarrow x \frac{dz}{dx} = \cos z$	M1 A1	For substituting into DE For DE in variables separable form
	$\Rightarrow \int \sec z dz = \int \frac{1}{x} dx$	M1	For attempt at integration to ln form on LHS
	$\Rightarrow \ln\left(\sec z + \tan z\right) = \ln kx$	A1	For correct integration (k not required here)
	$OR \ln \tan \left(\frac{1}{2} z + \frac{1}{4} \pi \right) = \ln kx$		
	$\Rightarrow \sec\left(\frac{y}{x}\right) + \tan\left(\frac{y}{x}\right) = kx$	A1 6	For correct solution
	$OR \tan\left(\frac{y}{1+1} + \frac{1}{\pi}\pi\right) = kr$		AEF including $RHS = e^{(\ln x)+c}$
	(2x + 4x)		
(ii)	$(4, \pi) \Rightarrow \sec \frac{1}{4}\pi + \tan \frac{1}{4}\pi = 4k$	M1	For substituting $(4, \pi)$
	$OR \tan\left(\frac{1}{8}\pi + \frac{1}{4}\pi\right) = 4k$		into their solution (with k)
	$\Rightarrow \sec\left(\frac{y}{x}\right) + \tan\left(\frac{y}{x}\right) = \frac{1}{4}\left(1 + \sqrt{2}\right)x$	A1 2	For correct solution AEF Allow decimal equivalent $0.60355 x$
	$OR \ \tan\left(\frac{y}{2x} + \frac{1}{4}\pi\right) = \left(\frac{1}{4}\tan\frac{3}{8}\pi\right)x \ or \ \frac{1}{4}\left(1 + \sqrt{2}\right)x$		Allow $e^{\ln x}$ for x
		8	

5	(i)	$C + iS = 1 + \frac{1}{2}e^{i\theta} + \frac{1}{4}e^{2i\theta} + \frac{1}{8}e^{3i\theta} + \dots$	M1 A1	For using $\cos n\theta + i \sin n\theta = e^{i n\theta}$ at least once for $n \ge 2$ For correct series
		$=\frac{1}{1-\frac{1}{2}e^{i\theta}}=\frac{2}{2-e^{i\theta}}$	M1 A1 4	For using sum of infinite GP For correct expression AG SR For omission of 1st stage award up to M0 A0 M1 A1 OEW
	(ii)	$C + \mathrm{i} S = \frac{2(2 - \mathrm{e}^{-\mathrm{i}\theta})}{(2 - \mathrm{e}^{\mathrm{i}\theta})(2 - \mathrm{e}^{-\mathrm{i}\theta})}$	M1	For multiplying top and bottom by complex conjugate
		$=\frac{4-2e^{-i\theta}}{4-2(e^{i\theta}+e^{-i\theta})+1}=\frac{4-2\cos\theta+2i\sin\theta}{4-4\cos\theta+1}$	M1	For reverting to $\cos\theta$ and $\sin\theta$ and equating Re <i>OR</i> Im parts
		$\Rightarrow C = \frac{4 - 2\cos\theta}{5 - 4\cos\theta}, S = \frac{2\sin\theta}{5 - 4\cos\theta}$	A1 A1 4	For correct expression for C AG For correct expression for S
			8	
6	(i)	Aux. equation $m^2 + 2m + 17 (= 0)$ $\Rightarrow m = -1 \pm 4i$	M1 A1	For attempting to solve correct auxiliary equation For correct roots
		$CF(y =) e^{-x} (A\cos 4x + B\sin 4x)$	A1√	For correct CF (allow $A \frac{\cos}{\sin}(4x + \varepsilon)$)
		PI $(y =) px + q \implies 2p + 17(px + q) = 17x + 36$ $\implies n = 1$	M1	(trig terms required, not $e^{\pm 4ix}$) f.t. from their <i>m</i> with 2 arbitrary constants For stating and substituting PI of correct form
		$\rightarrow p-1$	A 1	For correct value of q
		GS $y = e^{-x} (A\cos 4x + B\sin 4x) + x + 2$	B1√ 7	For GS. f.t. from their CF+PI with 2 arbitrary constants in CF and none in PI. Requires $y = 1$.
	(ii)	$x \gg 0 \Rightarrow e^{-x} \rightarrow 0 \ OR \ very \ small$ $\Rightarrow y = x + 2 \ approximately$	B1 B1√ 2	For correct statement. Allow graph For correct equation Allow \approx , \rightarrow and in words Allow relevant f.t. from linear part of GS

7	(i)	$(1, 3, 5)$ and $(5, 2, 5) \Rightarrow \pm [4, -1, 0]$ in Π	M1		For finding a vector in Π
		$\mathbf{n} = \begin{bmatrix} 2 & -2 & 3 \end{bmatrix} \times \begin{bmatrix} 4 & -1 & 0 \end{bmatrix} = k \begin{bmatrix} 1 & 4 & 2 \end{bmatrix}$	M1		For finding vector product of
		$\mathbf{n} = [2, 2, 3] \land [\mathbf{\tau}, 1, 0] = \kappa [1, \mathbf{\tau}, 2]$	A 1		direction vectors of l and a line in Π
		\rightarrow r [1 4 2] = 23		4	For correct n
	(ii)	METHOD 1	AI	4	For correct equation. Allow multiples
	(11)	Perpendicular to Π through $(-7, -3, 0)$ meets Π	M1		For using perpendicular from point on l to π
					Award mark for $k\mathbf{n}$ used
		where $(-7+k)+4(-3+4k)+2(2k) = 23$	M1		For substituting parametric line coords into Π
		$1 - 2 - 1 - 2 \sqrt{1^2 + 4^2 + 2^2} - 2 \sqrt{21} - 0.165$	M1		For normalising the n used in this part
		$\Rightarrow k = 2 \Rightarrow d = 2\sqrt{1^2 + 4^2} + 2^2 = 2\sqrt{21} \approx 9.165$	A1	4	For correct distance AEF
		METHOD 2			
		$\Pi \text{ is } x + 4y + 2z = 23$	M1		For attempt to use formula for perpendicular distance
		$\Rightarrow d = \frac{\left (-7) + 4(-3) + 2(0) - 23\right }{\sqrt{2} + 2(0) - 23} = 2\sqrt{21} \approx 9.165$	M1		For substituting a point on <i>l</i> into plane equation
		$\sqrt{1^2 + 4^2 + 2^2}$	M1		For normalising the n used in this part
			A1		For correct distance AEF
		METHOD 3			
		$\mathbf{m} = [1, 3, 5] - [-7, -3, 0] = (\pm)[8, 6, 5]$	M1		For finding a vector from l to Π
		$OR = [5, 2, 5] - [-7, -3, 0] = (\pm)[12, 5, 5]$			
		$\Rightarrow d = \mathbf{m} \cdot [1, 4, 2] = \frac{42}{2} = 2\sqrt{21} \approx 0.165$	M1		For finding m . n
		$\Rightarrow u - \frac{1}{\sqrt{1^2 + 4^2 + 2^2}} - \frac{1}{\sqrt{21}} - 2\sqrt{21} \approx 9.103$	M1		For normalising the n used in this part
			A1		For correct distance AEF
		METHOD 4			As Method 1, using parametric form of <i>II</i>
		[-7, -3, 0] + k[1, 4, 2] = [1, 3, 5] + s[2, -2, 3] + t[4, -1]	,0] M	[]	For using perpendicular from point on l to Π
					Award mark for $k\mathbf{n}$ used
		$ \begin{cases} k - 2s - 4t &= 8\\ 4k + 2s + t &= 6\\ 2k - 3s &= 5 \end{cases} \implies k = 2 \left(s = -\frac{1}{3}, \ t = -\frac{4}{3}\right) $	M1		For setting up and solving 3 equations
		$\Rightarrow d = 2\sqrt{1^2 + 4^2 + 2^2} = 2\sqrt{21} \approx 9.165$	M1		For normalising the n used in this part
			A1		For correct distance AEF
		METHOD 5			
		$d_1 = \frac{23}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{23}{\sqrt{21}}$	M1		For attempt to find distance from O to Π <i>OR</i> from O to parallel plane containing l
		$d_2 = \frac{[-7, -3, 0] \cdot [1, 4, 2]}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{-19}{\sqrt{21}}$	M1		For normalising the n used in this part
		$23-(-19)$ $2\sqrt{21}$ 0.165	M1		For finding $d_1 - d_2$
		$\Rightarrow a_1 - a_2 = a = \frac{1}{\sqrt{21}} = 2\sqrt{21} \approx 9.163$	A1		For correct distance AEF
	(iii)	(-7, -3, 0) + k(1, 4, 2)	M1		State or imply coordinates of a point on the reflected line
		Use $k = 4$	M1		State or imply $2 \times \text{distance from (ii)}$
					Allow $k = \pm 4$ OR $\pm 4\sqrt{21}$ f.t. from (ii)
		$\mathbf{b} = [2, -2, 3]$	B1		For stating correct direction
		$\mathbf{a} = [-3, 13, 8]$	A1	4	For correct point seen in equation $\mathbf{r} = \mathbf{a} + t\mathbf{b}$
		$\mathbf{r} = [-3, 13, 8] + t[2, -2, 3]$			AEF in this form
			12	2	

4727

8 (i)	$\{A, D\} OR \{A, E\} OR \{A, F\}$	B1	1	For stating any one subgroup
(ii)	<i>A</i> is the identity 5 is not a factor of 6	B1 B1	2	For identifying A as the identity For reference to factors of 6
(iii)	OR elements can be only of order 1, 2, 3, 6			$\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\mathbf{r}} \mathbf{d}_{\mathbf{r}} \mathbf{r} \mathbf{r} \mathbf{d}_{\mathbf{r}} \mathbf{r} \mathbf{r} \mathbf{d}_{\mathbf{r}} \mathbf{r} \mathbf{r} \mathbf{d}_{\mathbf{r}} \mathbf{d}_{\mathbf{r}} \mathbf{d}_{\mathbf{r}} \mathbf{r} \mathbf{d}_{\mathbf{r}} \mathbf{d}_{$
()	$(0, 1)$ $(0, \omega)$			For finding <i>BE</i> and <i>EB</i> AND using $\omega = 1$ For correct <i>BE</i> (<i>D</i> or matrix)
	$BE = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = D, \qquad EB = \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix} = F$	A1 A1		For correct <i>BE</i> (<i>D</i> or matrix) For correct <i>EB</i> (<i>F</i> or matrix)
	$D \ or \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ F \ or \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix} \in M$	A1 4	4	For justifying closure
(iv)	\Rightarrow closure property satisfied			For correct method of finding either inverse
(17)	$B^{-1} = \frac{1}{1} \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix} = C$	A1		For correct $B^{-1} = C$ Allow $\begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}$
	$E^{-1} = \frac{1}{-1} \begin{pmatrix} 0 & -\omega^2 \\ -\omega & 0 \end{pmatrix} = E$	A1 .	3	For correct $E^{-1} = E$ Allow $\begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}$
(v)	METHOD 1 M is not commutative	B1		For justification of M being not
	e.g. from $BE \neq EB$ in part (iii)	DI		commutative
	N is commutative (as \times mod 9 is commutative)	B1		For statement that N is commutative
	\Rightarrow M and N not isomorphic	B1# 3	3	For correct conclusion
	METHOD 2 Elements of <i>M</i> have orders 1, 3, 3, 2, 2, 2	B1*		For all orders of one group correct
	Elements of <i>N</i> have orders 1, 6, 3, 2, 3, 6	B1 (*dep))	For sufficient orders of the other group correct
	Different orders <i>OR</i> self-inverse elements \Rightarrow <i>M</i> and <i>N</i> not isomorphic	B1#		For correct conclusion SR Award up to B1 B1 B1 if the self- inverse elements are sufficiently well identified for the groups to be non- isomorphic
	METHOD 3 M has no generator since there is no element of order 6	B1		For all orders of M shown correctly
	N has 2 OR 5 as a generator	B1		For stating that <i>N</i> has generator 2 <i>OR</i> 5
	\Rightarrow M and N not isomorphic	B1#		For correct conclusion
	METHOD 4 M A B C D E F A B C D E B B C A F D C C A B E F D D E F D D D D E F D C B F F D E B F F D E B C M 1 2 A 8 7	B1*		For stating correctly all 6 squared elements of one group
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 (*dep) B1#)	For stating correctly sufficient squared elements of the other group
	$\rightarrow NI$ and N not isomorphic	D1#		# In all Methods, the last B1 is dependent on
				at least one preceding B1
		13		

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced Subsidiary GCE 4728

Mechanics 1

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: Facsimile: E-mail: 0870 770 6622 01223 552610 publications@ocr.org.uk

1	t = 5/1.2	M1	5=1.2t or 0=5-1.2t
i	t = 4.17 s	A1	$4 \frac{1}{6} \times 4 \frac{166}{6}$ or better 4 16 recurring
1	t 1.175	[2]	
		[4]	
11	$s = (-5)^2/2x1.2$	MI	$s = 5^{2}/2x1.2$ or $5^{2} = 2x1.2s$ or $0 = 5^{2} - 2x1.2s$
	s = 10.4 m	A1	Accept 10 5/12, but not 10
	OR(using(i))	[2]	
	$s = 5x4.17 - 1.2x4.17^{2}/2$	M1	Time must be > 0 . Accept t from (i)
	s = 10.4 m	A1	Award if -4 17 used
	OR(using(i))	111	
	OR(using(i)) s = (5(1,0))/2 = 4.17	M1	
	$s = (5 (+ 0))/2 \times 4.1/$	MI	
	s = 10.4 m	Al	
iii	Fr = 3x1.2	B1	Accept 3.6, +/-
	R = 3x9.8	B1	Accept 3g, +/-
	$\mu = (3x)1.2/(3x)9.8$	M1	Ratio of 2 positive numerical force terms
	$\mu = 0.122$	Δ1	Not 0.12
	$\mu = 0.122$		1101 0.12
		[4]	
	K = 3X9.8	RI	Accept 3g, +/-
	Mass x acceleration = $+/-3x1.2$	B1	
	$+/-\mu x29.4 = +/-3x1.2$	M1	Either both positive or both negative.
	$\mu = 0.122$	A1	
	· · · · · · · · · · · · · · · · · · ·		
2		D1	
2	+/-(0.4x3 - 0.6x1.5)	BI	+/- 0.3
i	$+/-(0.4 \times 0.1 + 0.6 \times 1)$	B1	Nb the terms have same signs
	(0.4x3 - 0.6x1.5) = +/-(0.4x0.1 + 0.6v)	M1	Equating their total mom before & after
	speed $ v = 0.433 \text{ ms}^{-1}$	A1	Accept 13/30 or 0.43 recurring but not 0.43
	OR	[4]	
	$\frac{1}{1}$	נד <u>ן</u> סו	Momentum abanga of D
	+/-(0.4x3 - 0.4x0.1) - +/-1.10		Momentum change of P
	(0.6v + 0.6x1.5) = 0.6v + 0.9	BI	Momentum change of Q
	1.16 = +/-(0.6v + 0.9)	M1	Equating momentum changes
	speed $ v = 0.433 \text{ ms}^{-1}$	A1	0.26/0.6 = v
ii	$+/-(0.4 \times 0.1 - 0.6 \times 0.1)$	B1	Nb the terms have different signs
	(0.4x3 - 0.6x1.5) = +/-(0.6y - 0.4x0.1)	M1	Must use \pm - same before momentum as in (i)
	y = 0.567	A 1	May be implied or in any format
	$PO = 0.1x^2 + 0.567x^2$	MI	(0.1 ± 0.567) where (0.1 ± 0.567)
	$PQ = 0.1X3 \pm 0.307X3$		(0.1 + 0.307) x3
	PQ = 2 m	AI	Accept 2.00(1), 2.0, 2.00
	OR	[5]	
	+/-0.4x3 + 0.4x0.1 and $+/-0.6v + 0.6x1.5$	B1	Both must be correct
	1.24 = +/-0.6v + 0.9	M1	Equating change in momentum
	v = 0.567	A1	May be implied, or in any format
	etc		
		L	1
2	$H = \pm / (0.5 \cos(60))$	M1	$\pm (0 \pm 5\cos 120)$
3	$\Pi = \tau/-(9 - 500500)$	IVI I	$\pm (9 \pm 3008120)$
1	$H = 6.5 N \qquad AG$	AI	
		[2]	
	$V = +/_{-}(12 - 5\sin 60)$	M1	$+/-(12 + 5\cos 150)$
11	V = 7.67 N		$\frac{17}{12} = \frac{12}{5005150}$
	v = /.0/1N	AI	Accept 7.000 of better, or 7.0 recurring
		[2]	
iii	$R^2 = 6.5^2 + 7.67^2$	M1	Uses Pythagoras on forces V(ii) and 6.5
	R = 10.1 N	A1	10.053
	$\tan A = 6.5/7.67 \text{ or } 7.67/6.5$	M1	Uses trigonometry in relevant triangle
			see algonomer, in relevant trangle
	A = 40(2) or 40.7	A 1	May be implied by first survey
	A = 40(.3) 01 49.7	AI	Iviay be implied by final answer
			As this is not a final answer, exact accuracy is
			not an issue
	Bearing = 320°	A1	Or better
		[5]	
L		1 [~]	1

4	$3.2 - 0.2t^2 = 0$	M1	Puts 0 for v and attempts to solve QE
i	t = 4 s	A1	Accept dual solution +/-4
		[2]	-
ii	a = -2x0.2t	M1*	Differentiates v
	a = -0.4x4	D*M1	Substitutes +ve t(i) in derivative of v
	$a = -1.6 \text{ ms}^{-2}$	A1	Negative only
		[3]	
iii		M1*	Integrates v, not multiplication by t
	$s=3.2t-0.2t^{3}/3$ (+c)	A1	
	t = 0, s = 0 so $c = 0$	B1	Or correct use of limits 0 and 4
	$s(4) = 3.2x4 - 0.2x4^3/3$	D*M1	Accept without/loss of c
	s = 8.53 m	A1	8 8/15 Accept with/without c
		[5]	

5	+/-3x20/2	M1	Use area of <u>scalene</u> triangle(s). Not suvat.
i	30 m	A1	Accept -30
		[2]	
ii		M1	Equates scalene trapezium area to distance (i)
	$(t+4)x^{3/2} = 30 \text{ or } 3t/2 = 30 - 4x^{3/2}$	A1	[(T-60)+4]x3/2 = 30, award A2
	t = 16 or t = 12	A1	
	T = 76	A1	
		[4]	
iii	T(accn) = 3/0.4 (=7.5 s)	B1	
	decn = 3/([76-60] - 4 - 7.5)	M1	Or $3 = \text{decn } x ([76-60] - 4 - 7.5)$
	decn = $(+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring
	OR	[3]	
	$S(accn) = 3^2/(2x0.4)$ (= 11.25 m)	BÌ	
	decn = $3^2 / [2x(30 - 3x4 - 11.25)]$	M1	
	decn = $(+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring
6	$T - 0.85g \sin 30 = 0.85a$	B1	Either equation correct
i	0.55g - T = 0.55a	B1	Both eqns correct and consistent 'a' direction
a	a = 1.225/1.4	M1	Solves 2 sim eqn
	a = 0.875	A1	
	T = 4.91	A1	4.908 or better – has to be positive
		[5]	-
b	$F = 2T\cos 30$	M1	Or Pythagoras or cosine rule
	F = 8.5(02)	A1ft	$cv(4.91)x\sqrt{3}$
		[2]	
ii		M1	Uses $v^2 = u^2 + 2a(1.5)$, u non-zero, a from (i)
	$v^2 = 1.3^2 + 2x0.875x1.5$ (=4.315)	Alft	$v = 2.077(v^2 = 1.69 + 3xcv(0.875))$
	a = +/-gsin30	B1	a = +/-4.9
	0 = 4.315 - 2x4.9s	M1	Uses $0^2 = u^2 + 2as$, with a not g or (i), u not1.3
	(s = 0.44)	A1	May be implied – need not be 3sf
	S = 1.94	A1	
		[6]	

7	Fr = 4 + 5sin60	M1	All $4 + \text{component } 5 (4 + 4.333(01))$
i	Fr = 8.33	A1	May be implied
	$R = 12 - 5\cos 60$	M1	+/-(All 12 - component 5 (12 - 2.5))
	R = 9.5	A1	May be implied, +ve from correct work
	$\mu = (4 + 5\sin 60)/(12 - 5\cos 60)$	M1	Friction/Reaction, Fr>4, R<12, both positive
	$\mu = 0.877$	A1	
		[6]	
ii	Upper block		
	$\mu = 5\sin 60/(9-5\cos 60) (=4.3/6.5)$	M1	(Component 5)/(9-component 5)
	$\mu = 0.666$	A1	
		[2]	
iii	Upper mass = $9/g$	B1	0.918(36)
	$(9/g)a = 5\sin 60 - 0.1(9 - 5\cos 60)$	M1	N2L $0.918(36)a = 4.33(01) - 0.1x6.5$
			where friction = $0.1x(9$ -component 5)
	a = 4.01	A1	
	Lower mass		
	Tractive force = $4 + 0.1(9-5\cos 60)$ (= 4.65)	M1	Compares TF (tractive force) and max friction
	Max Friction = $0.877(3+(9-5\cos 60)) = 8.33)$		
	Tractive force < Max Friction	A1	
	a = 0	A1	
	OR for Lower Mass	[6]	
	$ma = 4 + 0.1(9 - 5\cos 60) - 0.877(3 + 9 - 5\cos 60)$	M1	N2L with 3 force terms:
	-ve a caused by friction impossible, hence	A1	
	a = 0	A1	

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

Mathematics

Advanced GCE 4729

Mechanics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

4729	Mark Sch	eme	June 2010
1	$v^2 = 2 \ge 9.8 \ge 10$	M1	Using $v^2 = u^2 + 2as$ with $u = 0$
	$v = 14 \text{ ms}^{-1}$	A1	
	speed = $\sqrt{(7^2 + 14^2)}$	M1	Method to find speed using their "v"
	$15.7 \text{ or } 7\sqrt{5} \text{ m s}^{-1}$	A1	
	$\tan^{-1}(14/7)$ or $\tan^{-1}(7/14)$	M1	Method to find angle using their "v"
	63.4° to the horizontal	AI 6	26.6° to vertical
			0
2 (i)	$(6 \sin \Pi/2) \div (\Pi/2)$	M1	Use of correct formula
	3.82	A1 2	AG
(;;)	84 - 2(6, 2, 82) + 5x0, 82	MI	Mathad to find contro of mass
(11)	or $8x = \pm \frac{1}{3}(-3, 82) \pm 5x3, 82$	A1	Method to find centre of mass
	d = 6.95 or 6.96 or x = +/-0.955	A1	
	$\tan\theta = 0.96/6$	M1	Attempt to find the required angle
	$\theta = 9^{\circ}$	A1 5	
			7
3 (i)	D = 128 000/80 (= 1600)	B1	
- (-)	$k(80)^2 = 128\ 000/80$	M1	Driving force = resistance
		A1	
	$k = \frac{1}{4}$	A1	
	R = 900 N	BI 5	FT on their k ($R = 3600$ k)
(ii)	$D = 128\ 000\ /\ 60\ (=\ 2133\ 1_3)$	B1	
	$2000 \times 9.8 \times \sin^{20}$	BI	A torms required
	$a = 0.275 \text{ m s}^{-2}$	$\begin{array}{c} \mathbf{N}\mathbf{I}\mathbf{I}\\ \mathbf{A}1 4 \end{array}$	4 terms required
	u 0.275 m 5	711 4	9
4 (i)	$4T\cos 20^\circ = 5 \ge g \ge 2.5$	Ml	Using moments; allow sin/cos mix
	T = 32.6 N	A1 A1 3	Anow with omission of g
	1 52.01	111 3	
(ii)	$X = T \sin 20^{\circ}$	MI	allow sin/cos mix
	$\begin{array}{c} \mathbf{X} = 11.1 \\ \mathbf{Y} + \text{Tagg} 208 = 5 \text{ y } \alpha \end{array}$	AI M1	FI their I
	$1 \pm 1\cos 20^{\circ} = 5 \times g$ or $2.5Y = 1.5 \times T\cos 20$ or $4V = 1.5 \times 5g$	1411	
	Y = 18.4 FT	A1	FT their T, but not from omission of
			g
	$R = \sqrt{(X^2 + Y^2)}$ or $\tan^{-1}(Y/X)$	M1	$X \neq 0, Y \neq 0$
	or $\tan^{-1}(X/Y)$		
	R = 21.5 N	A1	
	$\theta = 58.8^{\circ}$ above the horizontal	A1 7	or 31.2° to left of vertical
			10

4729		Mark Sc	June 2010	
5	(i)	$T\cos 45^\circ + R\sin 45^\circ = mg$	*M1	3 terms
		Tsin45° - Rcos45° = mlsin45° ω^2	*M1	3 terms; $a = r \omega^2$
		$2T = \sqrt{2mg + ml\omega^2}$	Dep*M1	Method to eliminate R
		$T = m/2(\sqrt{2}g + l\omega^2)$	A1 6	AG www
	(ii)	$\mathbf{R} = 0$	B1	may be implied
		$2R = \sqrt{2mg} - ml\omega^2$	B1	
		or $T\cos 45^\circ = mg$ or $T = mlo^2$		
		Solve to find ω	M1	
			. 1	10
		$\omega = 4.16$ rad s	AI 4	10
6	(i)	2mu = 2mv + 3mv	M1	Conservation of momentum
		v=2/5 u	A1 A1 3	Must be $v =$
	(ii)	e = (3v - v) / u e = 4/5	M1 A1 2	Using restitution AG
	(;;;)	Initial K E = $9mv^2/2 = 18mu^2/25$	B1 FT	FT on their y from (i)
	(111)	Final K.E. = $9mv^2 / 8 = 9mu^2 / 50$	B1 FT	FT on their v from (i)
		$\frac{1}{2}m(V)^2 = \text{Final K.E.}$	M1	
		V = 3 u / 5	AI 4	AG
	(iv)	4mu / 5 - 3mu / 5 = 2mx + mv	M1	Conservation of momentum
		u/5 = 2x + y	A1 FT	FT on their v from (i); aef
		e = 4/5 = (y - x) / u	M1 FT	Using restitution
		4u - 3y - 3x solving 2 relevant equations	M1	
		$x = -u/5 \ y = 3u/5$	Al	
		y = 3u/5	A1	
		away from wall (x) + towards wall (y)	AI ð	17

4729	Mark Scheme		June 2010
7 (i) Or last 4 marks of (i)	$R = 0.2 \times 9.8 \times \cos 30^{\circ} (= 1.70)$ $F = 0.1 \times 9.8 \times \cos 30^{\circ} (= 0.849) \text{FT}$ $\frac{1}{2} \times 0.2 \times 11^{2} - \frac{1}{2} \times 0.2 \text{ v}^{2} =$ $0.2 \times 9.8 \times 5 \sin 30 + 5 \times 0.849$ $v = 5.44 \text{ m s}^{-1}$ $F + 0.2 g \sin 30 = \pm 0.2a$ $a = \pm 9.1$ $v^{2} = 11^{2} + 2 \times a \times 5$ $v = 5.44 \text{ m s}^{-1}$	B1 B1 M1 A1 A1 A1 6 M1 A1 M1 A1	FT on their R, but not R =0.2g Use of conservation of energy AG Use of N2L, 3 terms Complete method to find v
(ii)	t = $5\cos 30^{\circ}/5.44\cos 30^{\circ}$ t = 0.919 s u = $5.44\sin 30^{\circ}$ (= 2.72) s = $2.72 \times 0.919 - 4.9 \times 0.919^{2}$ s = -1.6 (or better) Ht drop to C = $5\sin 30^{\circ} = 2.5$ m Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	time to lateral position over <i>C</i> Ht dropped
Or first 5 marks of (ii)	y = xtan θ - gx ² sec ² $\theta/2V^2$ substitute values V = 5.44 θ = 30° x = 5cos30° y = 2.5 - 9.8x25x3/4x4/3 / (2x5.44 ²) y = -1.6 (or better)	B1 M1 A1 A1 A1	all 3 correct
OR (ii)	u = $5.44\sin 30^\circ$ (= 2.72) -2.5 = $5.44\sin 30t - 4.9t^2$ t = 1.04 x = $5.44\cos 30 \times 1.04 = 4.9$ (or better) Horizontal distance from B to C = $5\cos 30 = 4.3$ (or better) Ball does not hit the roof	B1 M1 A1 A1 A1 B1 A1 7	aef time to position level with <i>AC</i>
OR (ii)	y = xtan θ – gx ² sec ² θ /2V ² substitute values -2.5 = 0.577x – 0.221x ² Attempt to solve quadratic for x x = 4.9 (or better) Horizontal distance from B to C = 5cos30 = 4.3 (or better) Ball does not hit the roof	B1 M1 A1 M1 A1 B1 A1 7	aef
OR (ii)	u = $5.44\sin 30^\circ = 2.72$ -2.5 = $5.44\sin 30t - 4.9t^2$ t = 1.0 (or better) T = $5\cos 30^\circ/5.44\cos 30^\circ$ T = 0.92 (or better) Ball does not hit the roof	B1 M1 A1 A1 M1 A1 A1 7	aef time to position level with <i>AC</i> time to lateral position over <i>C</i>

4729	Mark Sch	neme		June 2010
OR (ii)	Attempt at equation of trajectory	M1		
	$y = 0.577x - 0.221x^2$	A1		
	y = -0.577x	B1		Equation of BC
	Solving their quadratic and linear			
	equations to get at least x or y	M1		
	x = 5.2 (or better) or $y = -3.0$ (or better)	A1		
	Horizontal distance from B to C =			Must be the one needed for
	$5\cos 30 = 4.3$ (or better)			comparison
	Or Ht drop to $C = 5\sin 30^\circ = 2.5$	B1		
	Ball does not hit the roof	A1	7	
OR (ii)	Attempt at equation of trajectory	M1		
	$y = 0.577x - 0.221x^2$	A1		
	y = -0.577x	B1		
	Solving their quadratic and linear			
	equations	M1		
	x = 5.2 (or better) and $y = -3.0$ (or	A1		
	better)			
	Distance = 6.0 (or better)	B1		Distance from B to point of
				intersection
	Ball does not hit the roof	A1	7	

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

Mathematics

Advanced GCE 4730

Mechanics 3

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

	1			For triangle with two of its sides marked 0.8 x 10.5 and 0.8 x 8.5 (or 10.5 and 8.5)
		For included angle marked α or for	MI	or for using $I = \Delta mv$ in one direction.
		$0.8(10.5 - 8.5\cos\alpha) = 4\cos\beta$ For opposite side marked 4/0.8 (or 4) or for	A1	Allow B1 for omission of 0.8
		$-0.8 \times 8.5 \sin \alpha = 4 \sin \beta$	A1	Allow B1 for omission of 0.8 For using the cosine rule or for eliminating
			M1	β
		$8.4^{2} + 6.8^{2} - 2x8.4x6.8 \cos \alpha = 4^{2}$ $\alpha = 28.1^{\circ}$	Alft Al	ft 0.8 mis-used or not used
F	2(i)	$[100a = 2aV_B]$	M1	For taking moments about A for AB
		Vertical component at B is 50 N Vertical component at C is 150 N	A1 A1 [3]	
-	(ii)		M1	For taking moments about B for BC (3 terms needed) or about A for the whole (4 terms needed)
		$100(0.5a) + (\sqrt{3} a)F = 150a \text{ or}$ $100a + 100(1.5a) = 150a + (\sqrt{3} a)F$	A1ft	
		Frictional force is 57.7 N	A1	
		Direction is to the right	ы [4]	
-	3(i)	u = 4 v = 2	B1 B1 [2]	
ŀ	(ii)			For using the principle of conservation of
		mu = ma + mb (or $u = b - a$)	M1 A1	momentum or for using NEL with $e = 1$
		u = b - a (or $mu = ma + mb$)	B1	
		$a = 0$ and $b = 4ms^{-1}$ Speed of A is $2ms^{-1}$ and direction at 90° to	A1ft	ft incorrect u
		speed of R is 2ms^{-1} and direction at 90 to the wall	Alft	ft incorrect v
		the wall	A1ft [6]	ft incorrect u
	4(i)	$[0.25 \text{ dv/dt} = 3/50 - t^2/2400]$	M1	For using Newton's second law (1 st or 2 nd stage) For attempting to integrate (1 st stage) and
			M1	using $v(0) = 0$ (may be implied by the absence of $+ C_1$)
		$v = 12t/50 - t^3/1800$	Al	
		$\begin{bmatrix} v(12) = 1.92 \end{bmatrix}$	M1	For evaluating v when force is zero
		$v = t^3/1800 - 12t/50 + C_2$	M1	and integrating
		$[1.92 = 0.96 - 2.88 + C_2]$	M1	For using $v(12) = 1.92$
		$v = t^{3}/1800 - 12t/50 + 3.84$ $v(24) = 5.76 = 3 \times v(12)$	A1	AG
		$v(2\pi) = 5.70 = 5 \land V(12)$	[8]	

E C				
	(ii)	Sketch has $v(0) = 0$ and slope decreasing		
	· /	(convex unwards) for $0 < t < 12$	B 1	
		Clottel has along increasing (concerned)	DI	
		Sketch has slope increasing (concave		
		upwards) for $12 < t < 24$	B1	
		Sketch has v(t) continuous single valued		
		and in an again α (as a set in a satisfier of $t = 12$)		
		and increasing (except possibly at $t = 12$)		
		with v(24) seen to be $> 2v(12)$	B1	
			[3]	
	E (!)		121	
	5(1)	For using amplitude as a coefficient of a		
		relevant trigonometric function.	B1	
		For using the value of ω as a coefficient of t		
			D1	
		in a relevant trigonometric function.	DI	
		$x_1 = 3cost and x_2 = 4cos1.5t$	B1	
			[3]	
	(;;)		- Hi - H	For using distance travelled by D for
	(II)			For using distance travened by F ₂ for
			M1	$0 < t < 5\pi/3$ is $5A_2$
		Part distance is 20m	A1	
				For subtracting displacement of D when
				For subtracting displacement of P_2 when
		[20 - (-3.62)]	M1	t = 5.99 from part distance.
		Distance travelled by P_2 is 23.6 m	A1	
			[4]	
			[4]	
	(iii)		M1	For differentiating x_1 and x_2
		$\dot{\mathbf{r}} = -3$ sint: $\dot{\mathbf{r}} = -6$ sin1 5t	A1	
		$x_1 = -55111, x_2 = -05111.51$		For evaluating when $t = 5.00$ (must use
				For evaluating when $t = 5.99$ (must use
			M1	radians)
		0.077 0.55	A1	
		$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	Г 4 Л	
			1/11	
-			[4]	
-		Alternative for (iii):	[4]	
		Alternative for (iii):	[4]	For using $y^2 = n^2(a^2 - x^2)$ (must use radians
-		Alternative for (iii):	[4] M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x)
-		Alternative for (iii):	4] M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x)
		Alternative for (iii): $v_1^2 = 3^2 - 2.87^2$, $v_2^2 = 2.25[4^2 - (-3.62)^2]$	M1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x)
		Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$	M1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts –ve and
		Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$	M1 A1 M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts –ve and changes sign at intervals of T/2 s
-		Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$	M1 A1 M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts –ve and changes sign at intervals of T/2 s
		Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55$; opposite directions	M1 A1 M1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts –ve and changes sign at intervals of T/2 s
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W	M1 A1 M1 A1 B1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts –ve and changes sign at intervals of T/2 s
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W	M1 A1 M1 A1 B1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s
-	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W	M1 A1 M1 A1 B1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W	M1 A1 M1 A1 B1 M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii)
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$	M1 A1 M1 A1 B1 M1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii)
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$	M1 A1 M1 A1 B1 M1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$	M1 A1 M1 A1 B1 M1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and etternation to each of a W
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000]	M1 A1 M1 A1 B1 M1 A1 M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800	M1 A1 M1 A1 B1 M1 A1 M1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800	M1 A1 M1 A1 B1 M1 A1 M1 A1 [5]	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W
	6(i)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800	M1 A1 M1 A1 B1 M1 A1 M1 A1 [5]	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20]	M1 A1 M1 A1 B1 M1 A1 M1 A1 [5] M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20]	M1 A1 M1 A1 B1 M1 A1 M1 A1 [5] M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20]	M1 A1 M1 A1 B1 M1 A1 M1 A1 [5] M1 M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required)
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20]	M1 A1 M1 A1 B1 M1 A1 M1 A1 [5] M1 M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required)
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2}(800/9.8)v^2$	M1 A1 M1 A1 B1 M1 A1 [5] M1 M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required)
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2}(800/9.8)v^2$ $= 800 \times 20.5 - 32000x0.5^2/(2x20)$	M1 A1 M1 A1 B1 M1 A1 [5] M1 M1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required)
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0, 4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55; \text{ opposite directions}$ PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2}(800/9.8)v^2 = 800 \times 20.5 - 32000x0.5^2/(2x20)$ Maximum speed is 19 9ms ⁻¹	M1 A1 M1 A1 B1 M1 A1 M1 A1 [5] M1 M1 A1 A1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required)
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0, 4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55; \text{ opposite directions}$ PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2}(800/9.8)v^2 = 800 \times 20.5 - 32000x0.5^2/(2x20)$ Maximum speed is 19.9ms ⁻¹	M1 A1 M1 A1 B1 M1 A1 M1 A1 [5] M1 M1 A1 A1 A1 A1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required)
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0, 4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55; \text{ opposite directions}$ PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2} (800/9.8)v^2 = 800 \times 20.5 - 32000x0.5^2/(2x20)$ Maximum speed is 19.9ms ⁻¹	[4] M1 A1 M1 A1 B1 M1 A1 A1 [5] M1 M1 A1 A1 A1 [4]	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required)
	6(i) (ii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2} (800/9.8)v^2$ $= 800 \times 20.5 - 32000x0.5^2/(2x20)$ Maximum speed is 19.9ms ⁻¹	[4] M1 A1 M1 A1 B1 M1 A1 A1 [5] M1 M1 A1 A1 A1 [4]	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required) For applying Newton's second law to
	6(i) (ii) (iii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55;$ opposite directions PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2}(800/9.8)v^2$ $= 800 \times 20.5 - 32000x0.5^2/(2x20)$ Maximum speed is 19.9ms ⁻¹	M1 A1 M1 A1 B1 M1 A1 A1 [5] M1 M1 A1 A1 A1 [4] M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required) For applying Newton's second law to jumper at lowest point (3 terms needed)
	6(i) (ii) (iii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0, 4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55; \text{ opposite directions}$ PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2} (800/9.8)v^2 = 800 \times 20.5 - 32000x0.5^2/(2x20)$ Maximum speed is 19.9ms ⁻¹	[4] M1 A1 M1 A1 B1 M1 A1 [5] M1 A1 [5] M1 A1 [4] M1 A1 [4] M1 A1 [4]	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required) For applying Newton's second law to jumper at lowest point (3 terms needed)
	6(i) (ii) (iii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0, 4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55; \text{ opposite directions}$ PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2} (800/9.8)v^2 = 800 \times 20.5 - 32000x0.5^2/(2x20)$ Maximum speed is 19.9ms ⁻¹ $(800) \ddot{x}/g = 800 - 32000 \times 5/20$	[4] M1 A1 M1 A1 B1 M1 A1 [5] M1 A1 [5] M1 A1 [4] M1 A1 [4] M1 A1 [4]	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required) For applying Newton's second law to jumper at lowest point (3 terms needed)
	6(i) (ii) (iii)	Alternative for (iii): $v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$ $4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0]$ $v_1 = 0.867, v_2 = -2.55; \text{ opposite directions}$ PE loss at lowest allowable point = 25W EE gain = $32000x5^2/(2x20)$ [25W = 20000] Value of W is 800 [800 = 32000x/20] $\frac{1}{2} (800/9.8)v^2$ $= 800 \times 20.5 - 32000x0.5^2/(2x20)$ Maximum speed is 19.9ms ⁻¹ $(800) \ddot{x}/g = 800 - 32000 \times 5/20$ Max. deceleration is 88.2 ms ⁻²	[4] M1 A1 M1 A1 B1 M1 A1 [5] M1 A1 [5] M1 A1 [4] M1 A1 [4] M1 A1 A1 A1 A1 A1 A1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of T/2 s For using EE = $\lambda x^2/(2L)$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W For using W = $\lambda x/L$ at max speed For using the principle of conservation of energy (3 terms required) For applying Newton's second law to jumper at lowest point (3 terms needed)

7(i)			For using the principle of conservation of
	$\left[\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m 6}^2 = \text{mg}(0.7)\right]$	M1	energy for P (3 terms needed)
	Speed of P before collision is 7.05ms ⁻¹	A1	
	Coefficient of restitution is 0.695	B1ft	ft 4.9 \div speed of P before collision
		[3]	-
(ii)			For using the principle of conservation of
	$\left[\frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ m } 4.9^2 - \text{mg} 0.7(1 - \cos \theta)\right]$	M1	energy for Q
	$v^2 = 3.43(3 + 4\cos\theta)$	A1	Accept any correct form
			For using Newton's second law radially
		M1	with $a_r = v^2/r$
	$T - mg \cos \theta = mv^2/0.7$	Al	
	$[T m 9 8 \cos \theta = m^3 43(3 + 4 \cos \theta)/0.7]$	M1	For substituting for v^2
	$\begin{bmatrix} 1 - 119.00050 - 119.45(5 + 40050)/0.7 \end{bmatrix}$	A1	AG
	$1 \text{ ension is } 14.7 \text{ in}(1 + 2 \cos \theta \text{)iv}$	[6]	
(iii)	$T = 0 \rightarrow \theta = 120^{\circ}$	B1	
(111)		51	For using $a = -g \cos \theta$
			$\begin{cases} \text{or } 3 \ A^2(3 + A\cos\theta)/0 \ 7 \end{cases}$
		M1	$\{013.45(5+40050)/0.7\}$
	Radial acceleration is $(+)4.9 \text{ ms}^{-1}$ or		of $a_tg \sin \theta$
	transverse acceleration is (\pm) 1.9 ms ⁻¹	A1	
	Radial acceleration is $(\pm)49 \text{ ms}^{-1}$ and		
	transverse acceleration is (\pm) 1.5 ms and (\pm)	B1	
		[4]	
			SR for candidates with a sin/cos mix in the
			work for M1 A1 B1 immediately above.
			(max, 1/3)
			Radial acceleration is $(\pm)8.49 \text{ ms}^{-1}$ and
			transverse acceleration is $(\pm)4.9 \text{ ms}^{-1}$ B1
(iv)	$[V^2 = 3.43 \{3 + 4(-0.5)\} \times 0.5^2 \text{ or}$		
	$V^2 = (-g\cos 120^\circ \ge 0.7) \ge \cos^2 60^\circ$	M1	For using $V = v(120^\circ) \times \cos 60^\circ$
	$V^2 = 0.8575$	A1	AG
	$[mgH = \frac{1}{2} m(4.9^2 - 0.8575) \text{ or}$		For using the principle of conservation of
	$mg(H - 1.05) = \frac{1}{2}m(3.43 - 1)$	M1	energy
	0.8575)]	A1	
	Greatest height is 1.18 m	[4]	

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

Mathematics

Advanced GCE 4731

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations
It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

1			
(i)	Using $\theta = \omega_1 t + \frac{1}{2} \alpha t^2$,		
	$1020 = 80 \times 15 + \frac{1}{2}\alpha \times 15^2$	M1	
	$\alpha = -1.6$	A1	
(::)	Angular deceleration is 1.6 rads ⁻²	[2]	
(11)	Using $\theta = \omega_2 t - \frac{1}{2} \alpha t^2$,		
	$\theta = 0 - \frac{1}{2} \times (-1.6) \times 5^2$	M1	
	Angle is 20 rad	A1 ft	ft is 12.5 α
(iii)	$\mathbf{U}_{\mathbf{r}} = \mathbf{r}^2 + 2\mathbf{r}^2$	[2] M1	
()	Using $\omega_2 = \omega_1 + 2\alpha\theta$, $0 - 80^2 + 2\gamma(-1.6)\theta$		
	$\theta = 80^{\circ} + 2 \times (-1.6) \theta$ $\theta = 2000^{\circ}$	A1 ft	
	Number of revolutions is 318 (3 sf)	A 1	Accept 1000
		[3]	π
2	Area is $\int_{-x}^{\ln 3} dx$		
	Alea is $\int_0^\infty e^{-\alpha x}$	M1	Limits not required
	$-\begin{bmatrix} a^{-x} \end{bmatrix}^{\ln 3} (-2)$		
	$-\begin{bmatrix} -e \\ \end{bmatrix}_0 (-\frac{1}{3})$	A1	For $-e^{-x}$
	$\int \ln 3 -x$		
	$\int x y dx = \int_0^\infty x e^{-x} dx$	M1	Limits not required
	$\begin{bmatrix} & & & & \\ & & & & & \\ & & & & & \end{bmatrix}^{\ln 3} \begin{pmatrix} 2 & 1 \\ & & & & \\ \end{pmatrix}$	M1	Integration by parts
	$= \begin{bmatrix} -xe & -e \\ 0 & 3 \end{bmatrix}_{0} (= \frac{-3}{3} - \frac{1}{3} \ln 3)$	A1	For $-xe^{-x} - e^{-x}$
	$\overline{r} = \frac{2}{3} - \frac{1}{3} \ln 3 = 1 - 1 \ln 3$		
	$x = \frac{2}{3}$ = 1 = $\frac{1}{2}$ m 5	A 1	
	$\int \frac{1}{2} v^2 dx = \int \frac{\ln 3}{2} (e^{-x})^2 dx$	AI	
	$\int_{2}^{2} y \mathrm{d}x = \int_{0}^{2} (\mathrm{d}x) \mathrm{d}x$		$\int (e^{-x})^2 dx$ or $\int (-\ln y) y dy + (\frac{1}{2} \ln 3) \times \frac{1}{2}$
	$=\left[-\frac{1}{e^{-2x}}\right]^{\ln 3}$ $(=\frac{2}{e^{-2x}})$	M1	
		Δ1	$-\frac{1}{4}e^{-2x}$ or $-\frac{1}{2}y^2 \ln y + \frac{1}{4}y^2$ (dep on
	$\overline{y} = \frac{2}{9} = \frac{1}{1}$	AI	M1)
	$\frac{2}{3}$ 3		
		A1 [9]	answers in an unacceptable form (eq
		[0]	decimals)
3	By conservation of angular momentum	M1	Using Io
(1)	$I_2 \times 15 = 0.9 \times 10$ $I_2 = 0.96$		
	$L_2 = 0.9 + m \times 0.4^2$		
	Mass is 0.375 kg	M1 A1	
	, j	[4]	
(ii)	KE before is $\frac{1}{2} \times 0.9 \times 16^2$	M1	Using $\frac{1}{2}I\omega^2$
	KE after is $\frac{1}{2} \times 0.96 \times 15^2$	A1 ft	Both expressions correct
	Loss of KE is 115.2–108 = 7.2 J	A1	
		[3]	

4	2110	M1	Velocity triangle with 90° opposite \mathbf{v}_C
(i)	15	A1	Correct velocity triangle
	$\cos \alpha = \frac{12}{15}$ $\alpha = 36.87^{\circ} (4 \text{ sf})$ Received of r_{1} is 110, 26.87, 072.12	M1	Finding a relevant angle
	$= 073^{\circ} \text{ (nearest degree)}$	A1 ag [4]	
(ii)	Magnitude is $\sqrt{15^2 - 12^2} = 9 \text{ ms}^{-1}$ Direction is 90° from \mathbf{v}_B Bearing is 73.13+90=163° (nearest	B1 M1 A1	Accept 8.95 to 9.05
	degree) Alternative for (ii) (using given answer in (i))	[3]	or Relative velocity is $\begin{pmatrix} v \sin \theta \\ v \cos \theta \end{pmatrix} = \begin{pmatrix} 15 \sin 110 \\ 15 \cos 110 \end{pmatrix} - \begin{pmatrix} 12 \sin 73 \\ 12 \cos 73 \end{pmatrix} \approx \begin{pmatrix} 2.6 \\ -8.6 \end{pmatrix}$
	$v^{2} = 12^{2} + 15^{2} - 2 \times 12 \times 15 \cos 37^{\circ}$ v = 9 $\frac{\sin \beta}{12} = \frac{\sin 37^{\circ}}{v}$ $\beta = 53^{\circ}$ Bearing is $110 + 53 = 163^{\circ}$	B1 M1 A1	or $v^2 = (2.6)^2 + (-8.6)^2$ Accept 8.95 to 9.05 Finding a relevant angle or $\tan \theta = \frac{2.6}{-8.6}$
(iii)	As viewed from B	M1	Diagram indicating initial displacement and relative velocity May be implied
	$d = 3500 \sin 56.87^{\circ}$ Shortest distance is 2930 m (3 sf)	M1 A1 [3]	Accept 2910 to 2950
	Alternative for (iii) $d^2 = (3500 \sin 40^\circ + 2.6t)^2 + (3500 \cos 40^\circ - 8.6t)^2$ Minimum when $-34432 + 162t = 0$ t = 213 Shortest distance is 2930 m (3 sf)	M1 M1 A1	Differentiating or completing the square Accept 2910 to 2950

5		M1	$(\delta m)x^2$ or $(\rho \delta x)x^2$ or integrating x^2
(1)	5	M1	Using $\delta m = \frac{m \delta x}{6a}$ or $\rho = \frac{m}{6a}$
	$I = \int_{-\infty}^{5a} \frac{m}{x^2} dx$ or $\int_{-\infty}^{5a} \rho x^2 dx$	A1	Correct integral expression for I
	$\int_{-a} 6a$ \int_{-a}		eg $I = \int_0^{5a} \dots + \int_0^a \dots$
			$I = \int_{-3a}^{3a} \dots + m(2a)^2 ,$
	$\begin{bmatrix} & & & \end{bmatrix}^{5a}$		$I = 2 \int_0^{3a} \dots + m(2a)^2$
	$= \left[\frac{m}{18a} x^3 \right]_{-a} = \frac{m}{18a} (125a^3 + a^3) \text{ or } 42\rho a^3$	M1	$I = \int_0^{6a} \dots -m(3a)^2 + m(2a)^2$
	$=\frac{126ma^3}{12}=7ma^2$	A1	Evaluating definite integral $Dependent on integrating x^2$
	18a	ag [5]	
(ii)	6mga	M1	Using C _θ
	WD by couple is $\frac{\cos a}{\pi} \times 3\pi$ (=18mga)	A1	
	Gain of PE is $mg(4a)$	B1	
	$18mga = 4mga + \frac{1}{2}(7ma^2)\omega^2$	M1 A1 ft	Equation involving WD, PE and $\frac{1}{2}I\omega^2$
	Angular speed is $\sqrt{\frac{4g}{a}}$	A1	
		[6]	

Mark Scheme

^	1		
6 (i)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(3\cos\theta + 4\sin\theta - 3)$	B1	
	When $\theta = 0$, $\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(3+0-3) = 0$	M1	Considering $\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0$
	so $\theta = 0$ is a position of equilibrium $\frac{d^2V}{d\theta^2} = mga(-3\sin\theta + 4\cos\theta)$	A1 ag	Correctly shown
	When $\theta = 0$, $\frac{d^2V}{d\theta^2} = 4mga > 0$ hence the equilibrium is stable	M1	Considering $\frac{d^2V}{d\theta^2}$ (or other method) $V'' = 4mga \implies$ Stable M1A0
		A1 ag [5]	$V'' = 4mga \implies \text{Minimum} \implies \text{Stable}$ M1A1
(ii)	Speed of <i>P</i> and Q is $a\dot{\theta}$	M1	Or moment of inertia of P is $5ma^2$
	KE is $\frac{1}{2}(5m)(a\dot{\theta})^2 + \frac{1}{2}(3m)(a\dot{\theta})^2$ or		$\frac{5}{2}ma^2\dot{\theta}^2 + \frac{3}{2}ma^2\dot{\theta}^2$ M1A1
	$\frac{1}{2}(8m)(a\dot{\theta})^2$		$\frac{1}{2}(5ma^2)\dot{\theta}^2 + \frac{1}{2}(3ma^2)\dot{\theta}^2$ M1A0
	$=\frac{5}{2}ma^2\dot{\theta}^2 + \frac{3}{2}ma^2\dot{\theta}^2$	Δ1	$\frac{1}{2}(8ma^2)\dot{\theta}^2$ M1A0
	$=4ma^2\dot{\theta}^2$	ag [2]	
(iii)	$V + 4ma^2\dot{\theta}^2 = K$		
	$\frac{\mathrm{d}V}{\mathrm{d}\theta}\dot{\theta} + 8ma^2\dot{\theta}\ddot{\theta} = 0$	M1	
	$mga(3\cos\theta + 4\sin\theta - 3)\dot{\theta} + 8ma^2\dot{\theta}\ddot{\theta} = 0$	A1	= 0 is required for A1 (may be implied
	For small θ , $\sin \theta \approx \theta$, $\cos \theta \approx 1$	M1	by later work)
	$mga(3+4\theta-3)+8ma^2\ddot{\theta}\approx 0$	A1 ft	Linear approximation (ft is dep on
	$\ddot{\theta} \approx -\frac{g}{2a}\theta$		M1M1)
	Approximate period is $2\pi \sqrt{\frac{2a}{g}}$	A1	
		[5]	

Mark Scheme

7		M1	Using parallel (or perpendicular) axes
(1)	$I = \frac{1}{3}m\{(3a)^2 + (4a)^2\} + m(5a)^2$	A1	rule or $I = \frac{4}{3}m(3a)^2 + \frac{4}{3}m(4a)^2$
	$=\frac{100ma^2}{3}$	A1	$3^{1} - 3^{1$
(ii)		[3]	
()	Re P		
	B		
	Sa, O ha		
	G [- 30-		
	mg		
	C P		
	By conservation of energy, $\frac{1}{1} \left(\frac{100}{10} ma^2 \right) \left(\frac{3}{2} ma(4a - 3a) \right)$	M1	Equation involving KE and PE
	$\frac{1}{2}\left(\frac{1}{3}ma^{2}w^{2}-max^{2}\right)$	ATI	
	$\frac{1}{3}$ mu w $-$ mgu $\boxed{3g}$		
	Angular speed is $\sqrt{\frac{38}{50a}}$	A1	
	$-mg(3a) = (\frac{100}{3}ma^2)\alpha$	ag M1	Using $C = I\alpha$
	Angular acceleration is $(-)\frac{9g}{100g}$	A1	
	1000	[5]	
(III)	$P - mg\cos\theta = m(5a)\omega^2$	M1	Equation involving <i>P</i> and $r\omega^2$
,	$P - \frac{4}{5}mg = m(5a)\left(\frac{3g}{50a}\right)$	A2	Give A1 if correct apart from sign(s)
	$P = \frac{11}{10} mg$		(Allow $\frac{3}{5}H + \frac{4}{5}V$ in place of P)
	$Q - mg\sin\theta = m(5a)\alpha$	M1	Equation involving Q and $r\alpha$
	$Q - \frac{3}{5}mg = -m(5a)\left(\frac{9g}{100\pi}\right)$	10.0	Give A1 if correct apart from sign(s)
	$O = \frac{3}{100a}$	A2 ft	ft for wrong value of α
	$\mathcal{L} = \frac{1}{20} m_s^2$		It for wrong value of <i>r</i> in second equation
	$F = \sqrt{F + Q} = \frac{1}{20} mg\sqrt{22} + 3$		(Allow $\frac{3}{5}V - \frac{4}{5}H$ in place of Q)
	$=\frac{\sqrt{495}}{20}mg$	M1	Dependent on previous M1M1
		A1 ag	
		[8]	
	Alternative for (iii) $H = m(5 a) a^2 \sin \theta = m(5 a) a \cos \theta$	N/4	Equation involving $H = rc^2$ and rc
	$H = m(5a)\omega^{-1} \sin \theta - m(5a)\omega^{-1} \cos \theta$ $H = m(5a)\left(\frac{3g}{3}\right)\left(\frac{3}{3} + m(5a)\left(\frac{9g}{3}\right)\left(\frac{4}{3}\right)$	1VI 1 A O H	Cive A1 if correct opert from cign(c)
	$W = m(5a)\left(\frac{5}{50a}\right)\left(\frac{5}{5}\right) + m(5a)\left(\frac{1}{100a}\right)\left(\frac{5}{5}\right)$	AZ II	Give AT in context apart from sign(s)
	$v - mg = m(5a)\omega \cos\theta + m(5a)\alpha\sin\theta$ $V - mg = m(5a)\binom{3g}{4}\binom{4}{4} - m(5a)\binom{9g}{3}\binom{3}{3}$	M1	Equation involving V, $r\omega^2$ and $r\alpha$
	$v - mg = m(5a)\left(\frac{5}{50a}\right)\left(\frac{1}{5}\right) - m(5a)\left(\frac{1}{100a}\right)\left(\frac{1}{5}\right)$	A2 ft	Give A1 if correct apart from sign(s)
	$H = \frac{27}{50}mg$, $V = \frac{97}{100}mg$		

$F = \sqrt{H^2 + V^2} = \frac{1}{100} mg\sqrt{54^2 + 97^2}$	M1	Dependent on previous M1M1
$=\frac{\sqrt{12325}}{100}mg=\frac{\sqrt{493}}{20}mg$	A1 ag	

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced GCE 4732

Probability and Statistics 1

Mark Scheme for June 2010

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

1i	590	B1 1	Allow approximately 590
ii	Graph horiz (for \geq 55 mks) oe	B1 1	or levels off, or $grad = 0$, $grad$ not increase
			Allow line not rise, goes flat, plateaus, stops
			increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27	M1	eg 26 mks $\rightarrow 150^{\text{th}}$ 27 mks $\rightarrow 180^{\text{th}}$
	Double & attempt read x	M1	eg read at $cf = 300$ or 360 Indep of first M1
	-		May be implied by ans
	Max $C = 29$ to 31.5	A1 3	Answer within range, no working, M1M1A1
			32 without working, sc B1
v	LO = 25.5-26.5 or UO = 34-35.5	M1	M1 for one correct quartile
	IOR = 8-10	A1	dep > 1 correct quartile or no working
	(German) more spread	B1ft 3	or less consistent, less uniform, less similar.
			more varied, more variable, greater variance.
			more spaced apart, further apart
			ft their IOR: must be consistent with IOR
			Correct comment with no working: M0A0B1
Total		9	
2i	Opposite orders or ranks or scores		or reversed, or backwards, or inverse
	or results or marks		or as one increases the other decreases
	$r_s = -1$	B1 1	Needs reason AND value
ii	Attempt Σd^2 (= 6)	M1	
	$1 - \frac{6 \times \Sigma d^2}{2}$		
	$3(3^2-1)$	M1	dep 1 st M1
	$=-\frac{1}{2}$ oe		Allow use wrong table for M1M1
	2	A1 3	
iii	3! or ${}^{3}P_{3}$ or 6	M1	r attempt list possible orders of 1,2,3 (\geq 3 orders)
	$1 \div \text{their '6'}$	M1	2 nd M1 for fully correct method only
	1 6		or $\frac{1}{3} \times \frac{1}{2} (\times 1)$: M1M1
	$\frac{1}{6}$ oe eg $\frac{1}{36}$	A1 3	
Total		7	
3i	If x is contr (or indep) or y depend't.		Allow x increases constantly, is predetermined.
_	use v on x	B1	vou choose x, vou set x, x is fixed, x is chosen
			·····
	If neither variable contr'd (or indep)		Allow y not controlled AND want est y from x
	AND want est y from x: use y on x	B1 2	
	·		Ignore incorrect comments
iia	$S = 510000 - \frac{1800^2}{2}$ (= 150000)		or $\frac{510000}{2} - 200^2$ (= 16666.7)
	$S_{xx} = 510000 - 9$ (= 150000)		$\frac{4080}{200\times1}$ (- 122.22)
	$S_{xy} = 4080 - \frac{1800 \times 14.4}{9} (= 1200)$	M1	or $\frac{4000}{9} - 200 \times 1.6 \ (= 133.33)$
			M1 for either <i>S</i>
	112001		1122 221
	$b = \frac{1200}{150000'} \qquad (= 0.008)$	M1	$b = \frac{155.55}{16666.7}$ dep correct expressions both S's
	144 - 0.009(-1800)	M1	or $a = \frac{14.4}{0.4} - 0.008 \times \frac{1800}{0.4}$ (= 0)
	$y - \frac{1}{9} = 0.008(x - \frac{1}{9})$	1111	Must he all somest for M1
	u = 0.008u(1.0)		
	$y = 0.008x (\pm 0)$	A1 4	
iib	312.5 or 313	B1ft 1	ft their equn in (iia)
iic	-0.4	B1ft 1	ft their equn in (iia)

4732		Mark S	Scheme June 201
iid	Contraction oe	B1(ft)	or length decreased, shorter, pushed in, shrunk, smaller
	Unreliable because extrapolated oe	B1 2	or not in the range of x or not in range of previous results
Total		10	
4ia	0.299 (3 sf)	B1 1	
ib	0.2991 - 0.1040	M1	Must subtract correct pair from table
	$= 0.195 (3 \text{ sf}) \text{ or } \frac{1280}{6561} \text{ oe}$	A1 2	
iia	$^{15}C_4 \times (1-0.22)^{11} \times 0.22^4$	M1	Allow M1 for ${}^{15}C_4 \times 0.88^{11} \times 0.22^4$
	= 0.208 (3 sf)	A1 2	
iib	$(15 \times 0.22 =) 3.3$	B1	
	$15 \times 0.22 \times (1-0.22)$ or '3.3'×(1-0.22)	M1	Allow M1 for $15 \times 0.22 \times 0.88$
	= 2.57 (3 sf)	A1 3	
Total		8	
51	$\frac{1}{2} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{1}{3}$ or $\frac{1}{4}_{C_2}$ or $\frac{2}{12}$	BI	or 1 out of 6 or 2 out of 12
	$(-1 \land C)$		or $\frac{21}{4!} \times 2$
	$\left(-\frac{1}{6} \operatorname{AG}\right)$		
	$\frac{1}{4} \times \frac{2}{3} \text{ or } 2 \times \frac{1}{4} \times \frac{1}{3} \text{ or } \frac{1}{2} \times \frac{1}{3} \text{ or } \frac{2}{4} \times \frac{1}{3}$	B1	or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{4_{C_2}}$ or $\frac{2!}{4!} \times 2$
	Add two of these or double one	B1 3	
	$(=1 \mathbf{AC})$	DIJ	
	$\left(-\frac{1}{3}\operatorname{AO}\right)$		or $\frac{2}{4C_2}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1
			or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	X = 3, 4, 5, 6 only, stated or used	B1	Allow repetitions
			Allow other values with zero probabilities.
	P(X=5) wking as for $P(X=4)$ above		
	or $1 - \left(\frac{1}{6} + \frac{1}{2} + \frac{1}{6}\right)$ or $\frac{1}{2}$	M1	
	P(X=3) wking as for $P(X=6)$ above		
	or $1 - (\frac{1}{2} + \frac{1}{2} + \frac{1}{2})$ or $\frac{1}{2}$	M1	or M1 for total of their probs = 1 dep B1
	3 4 5 6		or $P(X=3)=\frac{1}{2}$ $P(X=4)=\frac{1}{2}$ $P(X=5)=\frac{1}{2}$ $P(X=6)=\frac{1}{2}$
			Complete list of volves linked to probe
		AI 4	
iii	$\sum xp = 4\frac{1}{2}$	M1 A1	\geq 2 terms correct ft
	$\Sigma r^2 = (-211)$		
	$2x p \qquad (-21\frac{1}{6})$	M1	≥ 2 terms correct ft
	$-4\frac{1}{2}$	M1	Independent except dependent on +ve result
	$=\frac{11}{12}$ or 0.917 (3 sf)	A1 5	
Total	12 ,	12	
TOUAL		14	

4732		Mark S	cheme June 2	2010
6	$m = (9 \times 6 + 3) \div 10$	M1	or ((Sum of any 9 nos totalling 54) + 3) ÷ 10	
	= 5.7	A1		
	$2 = \frac{\Sigma x^2}{9} - 6^2$	M1	or $\frac{\Sigma(x-6)^2}{9} = 2$ M1	
	$\Sigma x^2 = 2 \times 9 + 6^2 \times 9 \text{ or } 342$	A1	or $\Sigma x^2 = 18 + 12 \times 54 - 36 \times 9$ or 342 A1	
	$v = \frac{('342'+3^2)}{10} - '5.7'^2$	M1	dep Σx^2 attempted, eg $(\Sigma x)^2$ (= 3249) or just state ' Σx^2 '; allow $$	
	= 2.61 oe	A1 6	CAO	
Total		6		
7i	${}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4} \text{ or } 6 \times 20 \times 5$ = 600	M1M1 A1 3	M1 for any 2 correct combs seen, even if added	
ii	$\frac{2}{4}$ or $\frac{{}^{3}C_{1}}{{}^{4}C_{2}}$ or $\frac{{}^{3}C_{1} \times {}^{6}C_{3} \times {}^{5}C_{4}}{{}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}}$ or	M1	or $\frac{1}{4} \times 1 + \frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4} + \frac{1}{4}$	
	$\frac{{}^{3}C_{1} \times {}^{6}C_{3} \times {}^{5}C_{4}}{{}^{'600'}}$			
	$=\frac{1}{2}$ oe	A1 2		
iii	${}^{3}C_{1} \times {}^{6}C_{3} (\times {}^{4}C_{4}) + {}^{3}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}$	M1M1	M1 either product seen, even if \times or \div by something	
	360	A1 3		
Total		8		

8			
8ia	Geo(0.3) stated or implied	M1	by $0.7^n \times 0.3$
	$0.7^3 \times 0.3$	M1	
	= 0.103 (3 sf)	A1 3	
b	0.7^3 or 0.343	M1	0.7^3 must be alone, ie not $0.7^3 \times 0.3$ or similar
	$1 - 0.7^3$	M1	allow $1 - 0.7^4$ or 0.7599 or 0.76 for M1 only
			or $0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3$: M1M1
			1 term wrong or omitted or extra M1
			or $1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3)$ or 0.343: M1
	= 0.657	A1 3	
iia	State or imply one viewer in 1 st four	M1	or B(4, 0.3) stated, or ${}^{4}C_{1}$ used, or YNNNY
	4 2		
	${}^{4}C_{1} \times 0.7^{3} \times 0.3 \qquad (= 0.412)$	M1	
	× 0.3	M1	dep 1st M1
	= 0.123 (3 sf)	A1 4	
b	$0.7^{\circ} + {}^{\circ}C_{1} \times 0.7^{4} \times 0.3$	M1	or $1 - (0.3^2 + 2 \times 0.3^2 \times 0.7 + 3 \times 0.3^2 \times 0.7^2 + 4 \times 0.3^2 \times 0.7)$
	= 0.528 (3 sf)	A1 2	
			Not ISW, eg 1 – 0.528: M1A0
Total		12	

Total 72 marks

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

Mathematics

Advanced GCE 4733/01

Probability and Statistics 2

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

4733/01

1	(i)(a)	$1 - P(\le 6) = 1 - 0.8675$	M1		1 – .9361 or 1 – .8786 or 1 – .8558: M19721: M0
		= 0.1325	A1 2		Or 0.132 or 0.133
	(b)	Po(0.42)	M1		Po(0.42) stated or implied
		$a^{-0.42} 0.42^2 = 0.05795$	M1		Correct formula, any numerical λ
		$e - \frac{1}{2!}$	A1	3	Answer, art 0.058. Interpolation in tables: M1B2
	(ii)	E.g. "Contagious so incidences do	B2	2	Contextualised reason, referred to conditions: B2. No
		not occur independently", or "more			marks for mere learnt phrases or spurious reasons, e.g.
		cases in winter so not at constant			not just "independently, singly and constant average
		average rate"			rate". See notes.
2	(i)	B(10, 0.35)	M1		B(10, 0.35) stated or implied
		P(< 3)	M1		Tables used, e.g. 0.5138 or 0.3373, or formula ± 1 term
		= 0.2616	A1	3	Answer 0.2616 or better or 0.262 only
	(ii)	Binomial requires being chosen	B2	2	Focus on "Without replacement" negating independence
		independently, which this is not, but			condition. It doesn't negate "constant probability"
		unimportant as population is large			condition but can allow B1 if "selected". See notes
3	(i)	$(32-40) = \Phi^{-1}(0.2) = -0.842$	M1		Standardise and equate to Φ^{-1} , allow "1 –" errors, σ^2 , cc
		$\left(\frac{-\sigma}{\sigma}\right)$	B1		0.842 seen
		$\sigma = 9.5[06]$	A1	3	Answer, 9.5 or in range [9.50, 9.51], c.w.o.
	(ii)	B(90, 0.2)	B1		B(90, 0.2) stated or implied
		≈ N(18, 14,4)	M1		N. their <i>np</i>
		$(195-18)$ 1 $\phi(0.2052)$	A1		variance their npq , allow $\sqrt{\text{errors}}$
		$1-\Phi\left[\frac{17.5-16}{\sqrt{14.4}}\right] = 1-\Phi(0.3953)$	M1		Standardise with <i>np</i> and <i>npq</i> , allow $$, cc errors, e.g.
			A1		396. 448. 458. 486. 472: \sqrt{npa} and cc correct
		= 1 - 0.6537 = 0.3463	A1	6	Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]
4		$H_0: p = 0.4.$	B1		Fully correct B? Allow π <i>n</i> omitted or μ used in both
_		$H_1: p > 0.4$	B1		or > wrong: B1 only, x or \overline{x} or 6.4 etc: B0
		$R \sim B(16, 0.4)$:	M1		B(16, 0.4) stated or implied, allow $N(6.4, 3.84)$
	(α)	$P(R \ge 11) = 0.0191$	A1		Allow for $P(\le 10) = 0.9808$ and ≤ 0.99 or $z = 2.092$ or
					p = 0.018 but not $P(<11) = 0.9951$ or $P(=11) = 0.0143$
		> 0.01	A1		Explicit comp with 01 or $z < 2.326$ not from <11 or $z=11$
	(B)	CR R > 12 and 11 < 12	A1		Must be clear that it's > 12 and not < 11
	(P)	Probability 0.0049	Al		Needs to be seen allow 0.9951 here or $n = 0.047$ from N
		Do not reject H _o Insufficient	M1		Needs like_with_like $P(R > 11)$ or $CR R > 12$
		evidence that proportion of	A1 FT	7	Conclusion correct on their n or CR contextualised not
		commuters who travel by train has		-	too assertive e.g. "evidence that" needed
		increased			Normal. $z = 2.34$, "reject" [no cc] can get 6/7
5	(i)	() 5	M1		$30 + 5z/\sqrt{10}$, allow \pm but not just – allow $\sqrt{\text{errors}}$
	(-)	(a) $30+1.645 \times \frac{5}{\sqrt{10}}$	B1		z = 1.645 seen, allow –
		22.6	Al		Critical value, art 32.6
		= 32.0	A1 FT	4	"> c " or "> c ". FT on c provided > 30, can't be
		Therefore critical region is $t > 32.6$			recovered. Withhold if not clear which is CR
		(b) $P(t < 32.6 \mid \mu = 35)$	M1*		Need their c, final answer < 0.5 and $\mu = 35$ at least, but
		$\begin{array}{c} (0) & 1 (i < 52.0 \ \mu = 55) \\ 32.6 - 35 \\ \end{array}$			allow answer > 0.5 if consistent with their (i)
		$\frac{32.0}{5} \frac{33}{5} = -1.5178$	dep*M1		Standardise their CV with 35 and $\sqrt{10}$ or 10
		5/√10	AĪ	3	Answer in range [0.064, 0.065], or 0.115 from 1.96 in (a)
	(::)	0.0645			
	(11)	$(32.6 - \mu) = 0$			Standardise <i>c</i> with μ , equate to Φ^{-1} , can be implied by:
		$\mu = 32.6$	AIFI		$\mu = \text{thenr } c$
		20 + 0.6m = 32.6		4	Equate and solve for m , allow from 30 or 35
		m = 21	AI	4	Answer, a.r.t. 21, c.a.o.
					MK: U.U5: M1 AU M1, 16./ A1 F1
					Ignore variance throughout (11)

6	(a)	N(24, 24)	B1	Normal, mean 24 stated or implied		
		$(30.5-24) = 1 - \Phi(1.327)$	B1	Variance or SD equal to mean		
		$1-\Phi\left(\frac{1}{\sqrt{24}}\right) = 1$	M1	Standardise 30 with λ and $\sqrt{\lambda}$, allow cc or $\sqrt{\gamma}$ errors, e.g.		
		- 0 0923	A1	.131 or .1103 ; 30.5 and $\sqrt{\lambda}$ correct		
		- 0.0725	A1 5	Answer in range [0.092, 0.0925]		
	(b)(i)	p or np [= 196] is too large	B1 1	Correct reason, no wrong reason, don't worry about 5 or 15		
	(ii)	Consider $(200 - E)$	M1	Consider complement		
		$(200 - E) \sim Po(4)$	M1	Po(200×0.02)		
		$P(\geq 6) [= 1 - 0.7851]$	M1	Poisson tables used, correct tail, e.g. 0.3712 or 0.1107		
		= 0.2149	A1 4	Answer a.r.t. 0.215 only		
7		$H_0: \mu = 56.8$	B2	Both correct		
		$H_1: \mu \neq 56.8$		One error: B1, but <i>not</i> \overline{x} , etc		
		$\overline{x} = 17085/300 = 56.95$	B1	56.95 or 57.0 seen or implied		
		$300(973847 5605^2)$	M1	Biased [2.8541] : M1M0A0		
		$\frac{1}{299}\left(\frac{1}{300}-56.95^{-1}\right)$	M1	Unbiased estimate method, allow if ÷ 299 seen anywhere		
		= 2 8637	Al	Estimate, a.r.t. 2.86 [not 2.85]		
		56.95 - 56.8 - 1.535	MI	Standardise with $\sqrt{300}$, allow $\sqrt{\text{errors}}$, cc		
	(α)	$z = \frac{10000}{\sqrt{2.8637/300}} = 1.000$	AI	$z \in [1.53, 1.54]$ or $p \in [0.062, 0.063]$, not – 1.535		
		1.535 < 1.645 or $0.0624 > 0.05$	AI	Compare explicitly z with 1.645 or p with 0.05, or		
				$2p > 0.1$, not from $\mu = 56.95$		
	(β)	CV 56 8 + 1 645 - 2.8637	M1	56.8 + $z\sigma/\sqrt{300}$, needn't have ±, allow $\sqrt{100}$ errors		
		$\sqrt{56.8 \pm 1.645} \times \sqrt{\frac{300}{300}}$	A1	z = 1.645		
		56.96 > 56.95	A1 FT	$c = 56.96$, FT on z, and compare 56.95 $[c_L = 56.64]$		
		Do not reject H_0 ;	M1	Consistent first conclusion, needs 300, correct method		
				and comparison		
		insufficient evidence that mean	A1 FT	Conclusion stated in context, not too assertive, e.g.		
		thickness is wrong	11	"evidence that" needed		
8	(i)	$\int_{\infty}^{\infty} \int_{\infty} \int_{\infty} x^{-a+1} \int_{\infty}^{\infty} x^{-a+1} dx$	M1	Integrate $f(x)$, limits 1 and ∞ (at some stage)		
		$\int_{1} kx^{-a} dx = \left k \frac{x}{-a+1} \right $	B1	Correct indefinite integral		
			A1 3	Correctly obtain given answer, don't need to see		
		Correctly obtain $k = a - 1$ AG		treatment of ∞ but mustn't be wrong. Not k^{-a+1}		
	(ii)	$\begin{bmatrix} \infty & 2 & -3 \\ 2 & x & -2 \end{bmatrix}^{\infty}$	M1	Integrate $xf(x)$, limits 1 and ∞ (at some stage)		
		$\int_{1} 5x dx = \left 5 \frac{-2}{-2} \right _{1} = 1 \frac{1}{2}$		$[x^4 \text{ is } not \text{ MR}]$		
		⊑1]∞	M1	Integrate $x^2 f(x)$, correct limits		
		$\int_{1}^{\infty} 3x^{-2} dx = \left 3\frac{x}{1} \right - (1\frac{1}{2})^{2}$	A1	Either $\mu = 1\frac{1}{2}$ or $E(X^2) = 3$ stated or implied, allow k, k/2		
			M1	Subtract their numerical μ^2 , allow letter if subs later		
		Answer ³ / ₄	A1 5	Final answer ³ / ₄ or 0.75 only, cwo, e.g. not from $\mu = -1\frac{1}{2}$.		
				[SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]		
	(iii)	$\int_{-1}^{2} (a-1)x^{-a} dx = \left[-x^{-a+1}\right]_{1}^{2} = 0.9$	M1*	Equate $\int f(x) dx$, one limit 2, to 0.9 or 0.1.		
				[Normal: 0 ex 4]		
		$1 - \frac{1}{2} = 0.9, \ 2^{a-1} = 10$	dep*M1	Solve equation of this form to get 2^{a-1} = number		
		2^{a-1}	M1 indept	Use logs or equivalent to solve 2^{a-1} = number		
		a = 4.322	A1 4	Answer, a.r.t. 4.32. T&I: (M1M1) B2 or B0		

4733/01

Specimen Verbal Answers

1	α	"Cases of infection must occur randomly, independently, singly and at	
		constant average rate"	B0
	β	Above + "but it is contagious"	B1
	γ	Above + "but not independent as it is contagious"	B2
	δ	"Not independent as it is contagious"	B2
	3	"Not constant average rate", or "not independent"	B0
	λ	"Not constant average rate because contagious" [needs more]	B1
	ζ	"Not constant average rate because more likely at certain times of year"	B2
	μ	Probabilities changes because of different susceptibilities	B0
	ν	Not constant average rate because of different susceptibilities	B2
	η	Correct but with unjustified or wrong extra assertion [scattergun]	B1
	θ	More than one correct assertion, all justified	B2
	π	Valid reason (e.g. "contagious") but not referred to conditions	B1
[Focu	s is on e	explaining why the required assumptions might not apply. No credit for regu	urgitatin
-	-		-

[Focus is on explaining why the required assumptions might not apply. No credit for regurgitating learnt phrases, such as "events must occur randomly, independently, singly and at constant average rate, even if contextualised.]

2 Don't need either "yes" or "no".

α	"No it doesn't invalidate the calculation" [no reason]	B0
β	"Binomial requires not chosen twice" [false]	B0
γ	"Probability has to be constant but here the probabilities change"	B0
δ	Same but "probability <u>of being chosen</u> " [false, but allow B1]	B1
3	"Needs to be independently chosen but probabilities change" [confusion]	B0
ζ	"Needs to be independent but one choice affects another" [correct]	B2
η	"The sample is large so it makes little difference" [false]	B0
θ	"The population is large so it makes little difference" [true]	B2
λ	Both correct and wrong reasons (scattergun approach)	B1

[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.

Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition <u>does</u> require the possibility of the same person being chosen twice.]

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Mathematics

Advanced GCE 4734

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

1(i)	Total has Poisson distribution with mean $\lambda = 0.21 \times 5 + 0.24 \times 5 = 2.25$	M1 Δ1	With ×5
	P(≥2) = 1 – e ⁻ (1+λ) =0.657	M1 A1	λ or 1+λ in brackets (their λ) Or interpolation from tables
		4	
(ii)	EITHER: Each length is a random sample	B1 1	In context
	reels	•	/ tecept rundonny
		[5]	
2	H ₀ : μ =(or ≥) 170 , H ₁ : μ < 170	B1	For both hypotheses; accept words
	x = 167.5 $s^2 = 5.9$	B1 B1	SR 2-tail test: B0B1B1M1A1M1A0 Max 5/7
	EITHER: (<i>a</i>) (167.5 – 170)/√(5.9/6) = - 2 52(1)	M1 A1	Standardise 167.5; + or – for M; /6
	Compare with -2.015	M1	Explicitly Allow 2.571
	OR: (β) 170 – t√(5.9/6)	M1	Finding critical value or region.
	= 168.0	A1	With <i>t</i> = 2.015 or 2.571
	Compare 167.5 with CV and reject H_0 There is sufficient evidence at the 5%	M1	Explicitly. Allow correct use of t M0 if z used
	significance level that the machine	A1	SR: B1 if no explicit comparison
	dispenses less than 170 ml on average.		but conclusion "correct"
		[7]	
		r. 1	
3(i)	H ₀ : There is no association between the	B1	SR difference in proportions
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day	B1	SR difference in proportions B1 define and evaluate p_1 and p_2
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives)	B1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for p =0.42
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7	B1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for p =0.42 M1A1 for z = ±1.827 or 1.835(no pe)
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$	B1 M1 A1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for p =0.42 M1A1 for z = ±1.827 or 1.835(no pe) M1A0 Max 5/8
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606	B1 M1 A1 M1 ft	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1)
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an	B1 M1 A1 M1 ft A1 A1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc.
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an association.	B1 M1 A1 M1 ft A1 A1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE)
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an association. SR: If H ₀ association. lose 1 st B1 and last	B1 M1 A1 M1 ft A1 A1 M1 A1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p = 0.106$) SR; B1
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an association. SR: If H ₀ association, lose 1 st B1 and last M1A1	B1 M1 A1 M1 ft A1 A1 M1 A1 8	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p = 0.106$) SR: B1 if no explicit comparison, as Q2
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an association. SR: If H ₀ association, lose 1 st B1 and last M1A1	B1 M1 A1 M1 ft A1 A1 A1 8	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p = 0.106$) SR: B1 if no explicit comparison, as Q2 SR: If H ₀ association, lose 1 st B1 and last M1A1
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an association. SR: If H ₀ association, lose 1 st B1 and last M1A1	B1 M1 A1 M1 ft A1 A1 A1 8	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p = 0.106$) SR: B1 if no explicit comparison, as Q2 SR: If H ₀ association, lose 1 st B1 and last M1A1
3(i) (ii)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an association. SR: If H ₀ association, lose 1 st B1 and last M1A1	B1 M1 A1 M1 ft A1 A1 A1 B1 B1 1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p = 0.106$) SR: B1 if no explicit comparison, as Q2 SR: If H ₀ association, lose 1 st B1 and last M1A1 OR from $z=\pm 2.17$, SR
3(i) (ii)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an association. SR: If H ₀ association, lose 1 st B1 and last M1A1 Conclusion the same since critical value > 2.706 (and test statistic unchanged)	B1 M1 A1 M1 ft A1 A1 A1 B1 B1 1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$ M1A1 for $z = \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p = 0.106$) SR: B1 if no explicit comparison, as Q2 SR: If H ₀ association, lose 1 st B1 and last M1A1 OR from $z=\pm 2.17$, SR
3(i) (ii)	H ₀ : There is no association between the area in which a shopper lives and the day they shop (H ₁ : All alternatives) E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$ = 2.606 Compare with 2.706 Do not reject H ₀ . There is insufficient evidence of an association. SR: If H ₀ association, lose 1 st B1 and last M1A1 Conclusion the same since critical value > 2.706 (and test statistic unchanged)	B1 M1 A1 M1 ft A1 A1 A1 B1 A1 B1 1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for p =0.42 M1A1 for $z = \pm 1.827$ or 1.835(no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator (p = 0.106) SR: B1 if no explicit comparison, as Q2 SR: If H ₀ association, lose 1 st B1 and last M1A1 OR from z =±2.17, SR

4(i)	s ² = (1183.65-246.6 ² /70)/69	M1	AEF
.,	Use $\overline{x} \pm zs/\sqrt{70}$	M1	Allow without ft or with s^2 ; with 70
	s /√(70)	A1	Their s
	1.645	A1	
	(3.10. 3.94)	A1 5	A0 if interval not indicated
(ii)	Change 90 to around 90	B1 1	Or equivalent
(iii)	$4(0.9)^3(0.1) + 0.9^4$	M1	Use of bino with $p=0.9$ or 0.1 and 4
``			and
	=0.9477	A1 2	Correct terms considered. art 0.948
		[8]	
5(i)	$e^{-2.25} - e^{-4}$	M1	Or find last entry using $F(x)$
.,	× 150	A1	, , , ,
	= 13.1	A1	Or 2.7 if found first
	Last: 150 – sum=2.7	A1 ft 4	Or 13.1 any accuracy
(ii)	$(H_0: Data fits the model, H_1: Data does$	B1	At least two correct
. ,	not fit)		All correct
	Combine last two cells	M1*Dep	In range 13.2 to 13.5
	$\chi^2 = 7.8^2/33.2 + 11.6^2/61.6 + 7.4^2/39.4 +$	A1	SR: If last 2 cells are not combined
	11.2 ² /15.8	A1	B0M1A1A1(for 13, 5) M1A1
	= 13.3(46)	M1	If no explicit comparison B1 if
	Compare with 9.348 (or 11.14), reject		conclusion follows
	H ₀	A1 ft	
	(There is sufficient evidence at the $2\frac{1}{2}$ %	Dep* 6	
	significance level that) the model is not a		
	good fit	[10]	
	good fit	[10]	
6(i)	good fit Anxiety scores; have normal	[10] B2	Context + 2 valid points B2
6(i)	good fit Anxiety scores; have normal distributions;	[10] B2	Context + 2 valid points B2 Context + 1VP, no context +2VP B1
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples	[10] B2	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$	[10] B2 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$	[10] B2 B1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 =
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$	[10] B2 B1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18)
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$	[10] B2 B1 B1 M1 A1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct +
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615	[10] B2 B1 B1 M1 A1 A1 A1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13)
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$	[10] B2 B1 B1 M1 A1 A1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or +
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C, H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$	[10] B2 B1 B1 M1 A1 A1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not	[10] B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + 100 +2.045
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 - 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = - 1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient oxidence at the 5%	[10] B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 - 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = - 1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	[10] B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tangen	[10] B2 B1 B1 M1 A1 B1 M1 A1 ft	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 - 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = - 1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	[10] B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OP Find CV or CP: B2B1B1;
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 - 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = - 1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	[10] B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or > st. t = ±1.699 or ±2.015
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 - 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	[10] B2 B1 B1 M1 A1 B1 M1 A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +; accept art ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 – 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	[10] B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1: G= 6.11(2) A1:
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 - 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = - 1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	[10] B2 B1 B1 A1 A1 B1 M1 A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st , t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 – 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = - 1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to	[10] B2 B1 B1 M1 A1 B1 M1 A1 ft 10 B1 1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i) (ii)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 – 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to CLT)	[10] B2 B1 B1 M1 A1 B1 M1 A1 ft 10 B1 1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t = ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i) (ii)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 – 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to CLT)	[10] B2 B1 B1 M1 A1 B1 M1 A1 ft 10 B1 1 [11]	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1

Γ	7(i)	Use $\Sigma F + \Sigma M \sim N(\mu, \sigma^2)$	M1	Sum of indep normal variables is
	()	$\mu = 1104.9$	A1	normal
		$\sigma^2 = 6 \times 9.3^2 + 9 \times 8.5^2$	M1	
		= 1169.2	A1	
		P(> 1150) = 1 – Φ([1150 –	M1	Standardise, correct tail. M0 $\sigma/\sqrt{15}$
		1104.9]/√(1169.2)	A1	Accept .094
		= 0.0937	6	
	(ii)	If unknown M, prob $\frac{1}{2}$, 6F and 9M as	M1	Considering two cases
		before.		
		If unknown W, prob $\frac{1}{2}$, 7W and 8M	R1 R1	Mean and variance
		Having $N(1003.3.1183.4)$	0101	Wear and variance
		Taving N(1035.5,1105.4)	Δ1	
		$P(> 1150) = 1$ $\phi(1.648) = 0.0407$	M1	
		$P = 1 \times 0.0026 + 1 \times 0.0407$		
		$P = \frac{1}{2} \times 0.0936 + \frac{1}{2} \times 0.0497$		ART 0.072
		= 0.07165	0 [10]	
			[12]	
	8(i)	$X = \frac{1}{4}S^2$	B1	
		r		
		$F(s) = \int_{1}^{s} \frac{s}{3s^{3}} ds = \left[-\frac{4}{3s^{2}}\right]_{1}$	M1	
		$=\frac{4}{3}(1-1/s^2)$	A1	lanore range here
		$\frac{3}{3} \left(1 + \frac{1}{3} \right) = D(2 + 2\frac{1}{3})$	N/1	SP: P1 for $C(y) = E(2yy)$ without
		$G(x) = P(x \le x) = P(3 \le 2\sqrt{x})$		SR. BTIOLO(x)- $F(2\sqrt{x})$ without
		$= F(2 \sqrt{x})$		ft E
		- 4 1	Λ1 fi	πF
		$=\frac{1}{3}-\frac{1}{3x}$	ATI	
		$\left(\frac{1}{1}, \frac{1}{1} \leq r \leq 1\right)$	N 4 4	
		$g(x) = \begin{cases} 3x^2 & 4 \end{cases}$	M1 D1	For G (a)
		0 otherwise.	ВТ	For range
			7	
	(ii)	EITHER: $G(m) = \frac{1}{2}$	M1	ft G(x) in (i)
		$\Rightarrow \frac{4}{2} - \frac{1}{2} = \frac{1}{2}$	Δ1 fi	CAO
		3 3x 2		
		$\rightarrow m = \frac{\pi}{5}$	A1	
		OR: $\int_{-\infty}^{\infty} \frac{1}{x^2} dx = \frac{1}{x^2}$	M1	Allow wrong $\frac{1}{4}$
		$J_{1/4} 3x^2 $ 2		
		$ \begin{bmatrix} 1 \end{bmatrix}^m _ 1 $		
		$\Rightarrow \left[\frac{-3x}{3x} \right]_{1/4} = \frac{-2}{2}$	A1	Allow wrong $\frac{1}{4}$
		2		
		\Rightarrow $m = \frac{1}{5}$	A1	CAO
			2	
			5 [10]	
			[10]	

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Mathematics

Advanced GCE 4735

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

1(i)	Var(2A - 3B) = 4Var(A) + 9Var(B) - 12Cov(A,B)	M1	Correct formula. Allow one
	\Rightarrow 18 = 36 + 54 - 12Cov(A B)	A1	Substitute relevant values
	$\Rightarrow \operatorname{Cov}(A, B) = 6$	A1 3	CAO
(ii)	Since $Cov(A, B) \neq 0$. A and B are not independent	B1 ft	Must have a reason. ft
()		1	Cov≠ 0
		(4)	
2(i)	$G'(t) = 8te^{4t^2}/e^4$	M1A1	M1 for ct^2/e^4
	E(X) = G'(1)		
	= 8	A1 2	
(ii)	EITHER: $G(t) = e^{-4}(1 + 4t^2 + 1)$	M1A1	Expand in powers of t
(")	$P(X=2) = coefficient of t^2 = 4e^{-4} or 4/e^4 or 0.0733$	A1 3	Expand in powers of t
	OR G''(t) = $(8+64t^2)e^{4t^2-4}$		M1 for reasonable attempt
	$P(X=2) = \pm G''(0) = 4e^{-4} \text{ or } 4/e^{4} \text{ or } 0.0733$		at M"(<i>t</i>)
		(6)	
3(i)	Number of different rankings ¹¹ C ₅	M1	Number of selections of 5
- (-)			from 11
	=462	A1	
	For <i>R</i> ≤ 17: 1+2+3+4+5 = 15		
	1+2+3+4+6=16		
	1+2+3+5+6=17	P 2	B1 for 2 or 3 correct
	$P(R \le 17) = 4/462 = 2/231$ AG	A1 5	BTION 2 OF 5 CONTECT
(ii)	<i>W</i> = 17	M1	
()	$P(W \le 17) = \frac{2}{231}$		
	Smallest SL = $\frac{400}{221}$ %	A1ft 2	Allow $\frac{4}{4}$ ft $\frac{2}{5}$ but must
	231	(7)	h_{231} , h_{231} , but must
			De exact
4(i)	EITHER: (a) $M'(t) = n(1 - 2t)^{-\frac{1}{2}n - 1}$	M1 A1	Correct form for M1
.,	E(Y) = M'(0) = n	A1	
	$M''(t) = n(n+2)(1-2t)^{-\frac{1}{2}n-2}$	M1	Ft similar M'(t)
	$Var(Y) = n(n+2) - n^2 = 2n$	A1 5	$M''(0) - (M'(0))^2$
	OR: $M(t) = 1 + nt + \frac{1}{2}n(n+2)t^2$	M1A1A1	
	$E(Y) = n$ $V(r/V) = n(n+2) = n^2 = 2n$		
<i>(</i> ;;)	Var(Y) = n(n+2) = n = 2n	A1 3	$From [(1 - 2t)^{-1/2}]^{60}$
(11)	v^2 distribution with 60 d f	B1 2	[(1-2i)]
(iiii)	E(S) = 60, Var(S) = 120	B1ft	From (i)
	Using CLT, Probability =1 – $\Phi(10/\sqrt{120})$	M1	Correct tail: allow cc
	= 0.181	A1 3	
		(10)	

[5(i)	Assumes salaries symmetrically	B1	In context
		distributed H ₀ : $m(edian) = 19.5$, H ₁ : $m(edian) \neq 19.5$	B1	For both ; not μ ; accept words
		P = 867 (or 408)	M1	
		$\mu = \frac{1}{4} \times 50 \times 51 (= 637.5)$	A1	
		$\sigma^2 = 50 \times 51 \times 101/24 \ (= 10731.25)$	A1	
		z = (a – 637.5)/√10731.25	M1	<i>a</i> =866.5, 867, 867.5 (or 408.5,
		Use $a = 866.5$ = 2.211 or 2.215 or 2.220 (from 408)	A1	408,
		Compare their z with 1.96 and reject H_0	M1	407.3)
		There is sufficient evidence at the 5% SL		Or <i>p</i> -value rounding to 0.026 or
		that the median salary differs from £19	A1 ft	0.027
		500	10	Compare with 0.05 or equivalent ft <i>z</i> Or find critical region
	(ii)	Use sign test when salary distribution is	B1 1	
		Skewed	(11)	
	6(i)	N 0 1 2	B1	
		0 0 c 2c	M1	Calculate 9 probs in terms of c
		R 1 2c 3c 4c		
		2 4c 5c 6c		
		1 otal 2/c = 1	Δ1	
		$C = \frac{1}{27}$	3	
	(ii)	9c/27c	M1	Marginal probability
		$=\frac{1}{3}$	A1 ft	AEF; ft c
	/:::\	P(N + P > 2)	2	
	(111)	P(N + R > 2) = 15c/27c = 5	M1	
			A1 ft	AEF; π c
			2	
	(iv)	$P(R=2) = \frac{15}{27}$	M1	Using conditional probabilities
		P(N R=2): $p_0 = \frac{4}{15}$, $p_1 = \frac{1}{3}$, $p_2 = \frac{2}{5}$	A1 ft	One value; ft values in (i)
		$E(N R=2) = 1 \times \frac{1}{3} + 2 \times \frac{2}{5}$	A1 ft	All values
		$=\frac{17}{15}$	A1	Or 1.13
			4	
	(\mathbf{v})	Eq. P($N = 0$ and $R = 0$) = 0		Or from conditional proba
	(•)	$P(N=0) \times P(R=0) = \frac{6}{27} \times \frac{3}{27} \neq 0$	IVI 1	M0 from $N=1$ with $R=1$ or 2
		So N and R are not independent	Δ1	All correct
			2	
			(13)	

7	'(i)	$\int_0^{2\theta} \frac{x^{n+1}}{2\theta^2} dx = \left[\frac{x^{n+2}}{2(n+2)\theta^2}\right]$	M1		Correct integral
		$= 2^{n+1} \theta^n / (n+2)$	A1		AEF
		$E(X) = 4\theta/3$	B1 ft	3	B0 if not 'deduced'
(i	ii)	$Var(X) = 2\theta^{2} - (4\theta/3)^{2} = 2\theta^{2}/9$ $Var(X^{2}) = E(X^{4}) - (E(X))^{2}$ $= 16\theta^{4}/3 - 4\theta^{4} = 4\theta^{4}/3$	M1A1ft M1A1ft	4	 ft (i) with no <i>n</i>
(i	iii)	$E(\sum X_i) = 3 \times 4\theta/3$ = 4\theta $T_1 = \frac{1}{4} \sum X_i$ $E(\sum X_i^2) = 3 \times 2\theta^2$ = 6\theta^2 $T_2 = (\sum X_i^2)/27$	M1 A1 ft A1 ft M1 A1 ft A1 ft	6	It (i) with no n ft with no n or θ ft with no n or θ ft with no n or θ
(i	iv)	$Var(T_2) = 1/27^2 \times 3 \times Var(X^2)$ = $4\theta^4/729$	M1 A1 (15)	2	
8	i(i)	$P(L \cap M) = P(L \mid M)P(M) = 0.12 \text{ and}$ $P(L) = P(M \cap L) / P(M \mid L) = 0.12/0.4 = 0.3$ $P(L' \cup M') = P[(L \cap M)']$ $= 1 - P(L \cap M)$	A1	М1	
(i	ii)	$= 1 - 0.2 \times 0.6 = 0.88$ $= 0.3 \times 0.12$ $= 0.3 \times 0.12$	B1 M1 A1	3	
		=0.036 P $(L' \cup M' \cup N')$ =1-0.036=0.964	A1	3 [6]	

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Mathematics

Advanced GCE 4736

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

Mark Scheme

1(1)	21 75 07 12 12 70 56 61 05 20	3.7.1		
I (1)	31 /5 8/ 42 43 /0 56 61 95 28	MI		28 moved to the end of the list, no other values moved
(a)	(may be shown vertically or as separate swaps)	Al		Correct list at end of first pass (cao)
	9 comparisons and 8 swaps	B1		9 and 8 (written, not tallies) (cao) - if not specified,
				assume the larger value is comparisons
	The smallest (final) mark, 28	B1	[4]	(their) 28 or smallest/least or final/last/end
			ניין	
				If sorted into increasing order: 28 31 75 42 43 70 56 61
				87 95
				MO A0, then 9 and $6 = B1$ and (their) 95 or
				largest/greatest/biggest or final/last/end = B1
(h)	75 87 42 43 70 56 61 95 31 28	B 1	[1]	Correct list at end of second pass
(0)	75 07 72 75 70 50 01 75 51 20	DI	[*]	contect list at end of second pass
				If corted into increasing order and already penalized in
				(i)(a) then condone here: 28 21 42 42 70 56 61 75 87 05
()	7	D 1	F41	(1)(a) then condone here. 28 51 42 45 70 50 01 75 87 95
(c)	/ more passes	BI	[1]	/ (cao)
(ii)	31 28 75 87 42 43 70 56 61 95	M1		31 28 75 or 31 28 75
	75 31 28 87 42 43 70 56 61 95	A1		Correct list, in full, at end of second pass
				Lists must be easily found, not picked out from working,
				if the candidate has labelled passes use them as labelled
	1 comparison and 0 swaps in first pass	B1		1 and 0 (written)(cao) may appear next to list
	2 comparisons and 2 swaps in second pass	B1	[4]	2 and 2 (written)(cao) may appear next to list
			[-]	
				If sorted into increasing order: 28 31 75
				M0, A0, then 1 and $1 = B1$; 1 and $0 = B1$
(iii)	Bubble sort does not terminate early, since it takes	B1		Identifying that bubble sort does not terminate early
	9 passes to get 95 to the front of the list,			(Just stating $9+8++1$ or $45 = B0$)
	so it uses $9+8++1$ or 45 comparisons			Allow 'the largest number is at the end of the list' or '95
				at end'
	Shuttle sort takes fewer than $1+2+\ldots+9$	B 1	[2]	A good explanation of why shuttle sort requires fewer
	comparisons since for example in the fourth pass	DI	[4]	comparisons in this particular case
	42 will be compared with 28, 31 and 75 but not			Do not accept 'because the list is not in reverse order'
	with 87			
$(\mathbf{i}\mathbf{v})$	$(50)^2$	M1		Correct method
(1V)	$20 \times (\frac{50}{10})^{-1}$	1111		
	= 500 seconds	A 1		
		AI	[2]	500 seconds or 8 mins 20 sec (without wrong working)
4736

Mark Scheme

2(i)	Cannot have an odd number of odd nodes	B1	[1]	Sum of orders must be even
	Odd vertices come in pairs			Sum of orders is 9 so 4.5 arcs (which is impossible)
(ii)	eg Many other correct possibilities	M1 A1	[2]	A diagram showing a graph with four vertices that is <u>not connected</u> and <u>not simple</u> Vertices have orders 1, 2, 3, 4
(iii)	The vertex of order 4 needs to connect to four other vertices, but there are only three other vertices available, so <u>one vertex must be joined</u> <u>twice</u> or <u>the vertex of order 4 is connected to</u> <u>itself</u> . Hence the graph cannot be simple	M1 A1	[2]	Specifically identifying that the problem is with the vertex of <u>order 4</u> <u>Explaining</u> why the graph cannot be simple (either reason) and stating that simple cannot be achieved Ignore any claims about whether or not the graph is connected
(iv) (a)	Each vertex of order 4 connects to each of the <u>others</u> , since graph is simple. Hence the other two vertices must have order (at least) 3. But <u>Eulerian</u> , so all must have order 4.	B1	[1]	Any reasonable explanation, but <u>not just a diagram</u> of a specific case 'the other two must be odd but they can't because Eulerian' is not enough Note: the graph has five vertices
(b)	Graph is Eulerian - so each vertex order is even; simple - so no vertex has order more than 4; and connected - so no vertex has order 0. Hence <u>each</u> vertex has order either 2 or 4. But cannot have 3 or 4 vertices of order 4. So must have $0, 1, 2$ or 5 vertices of order 4.	B1 M1 A1	[3]	Explaining why there are only four such graphs Or list all the possibilities (eg 22222 42222 44222 44444) Any two correct (note: must be simply connected and Eulerian) All four correct and <u>no extras</u> (apart from topologically equivalent variations)

3(i)	$y \ge x$ $x \ge 0$ $y \le 7 - \frac{2}{3}x$	M1 M1 A1	[3]	Boundaries $y = x$ and $x = 0$ in any form (may be shown as an equality or an inequality with inequality sign wrong) Boundary $2x + 3y = 21$ in any form <u>All</u> inequalities correct (and any extras do not affect the feasible region)
(ii)	$(0, 7) \Rightarrow 42$ $(4.2, 4.2) \Rightarrow 29.4 \text{ or } (\frac{21}{5}, \frac{21}{5}) \Rightarrow \frac{147}{5}$ At optimum, $x = 0$ and $y = 7$ $P_1 = 42$	M1 A1 A1	[3]	Substantially correct attempt at testing vertices (at least one vertex apart from (0, 0)) or using a line of constant profit (may be implied) Accept (0, 7) identified (cao) 42 (stated) (cao) NOT deduced from earlier working, unless identified
(iii)	(4.2, 4.2) $P_k = 4.2(k+6)$ or $4.2k+25.2$	B1 B1	[2]	cao cao
(iv)	Compare $kx + 6y$ with boundary $2x + 3y$ or algebraically, $4.2(k+6)$ with 42 or $-\frac{k}{6}$ with $-\frac{2}{3}$ $\Rightarrow k \le 4$ $k \le 4$ or $k < 4$ implies M1, A1	M1 A1	[2]	Algebraically or using line, <u>or implied</u> (allow = here) Accept $k < 4$ No need to say that $k > 0$, but candidates may also say $k > 0$ or $k \ge 0$ Note: k is continuous, so answers such as ' $k = 1, 2, 3, 4$ ' or ' $k = 1, 2, 3$ ', with no other working, would get M1, A0

4(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 B1 B1 B1	[5]	 1.7 shown as a temporary label at <i>G</i> All temporary labels correct with no extras (may not have written temporary label when it becomes permanent) All permanent labels correct (cao) Order of labelling correct (cao) This route written down (not reversed) (cao)
(ii)	Poute Inspection problem	D 1	[1]	Accent Chinese postman
(11)	Route Inspection problem	BI	[1]	Accept Chinese postman Allow 'postman', 'postman route', but not just 'inspection'
(iii)	CD(CBD) = 0.3, DG(DFG) = 0.65,	M1		Any one of these seen (explicitly or as part of a
				calculation)
	CG(CBDFG) = 0.95	A1		All three of these seen (explicitly or as parts of
				calculations)
	CD (CBD) and $FG = 0.75$	M1		Or either of these with AB to give 1.25 or 1.55
	or CD (CBD) and EG (EFG) = 1.05			respectively
				Adding their 0.75 to 2.7, on their 0.75 to $2.7 \pm 0.5 \pm 0.2$
	Length = $3.7 + 0.5 + 0.3 + 0.75$	M1		Adding their 0.75 to 5.7 or their 0.75 to $5.7 + 0.5 + 0.5$
	= 5.25 km	Al		5 25 implies M1 M1 A1 irrespective of working
			[5]	olizo implies fill, fill fill, mespeciate of working
(iv)	B-D-F-G-C-B	B1		cao
	1.9 km	B1	[2]	1.9 (cao) irrespective of method
(v)	[TREE]	B1		Correct tree drawn
	Vertices added in order <i>BDCF</i> or <i>BDFC</i>	B1		A valid order of adding vertices or a valid order of adding
	Arcs added in order <i>BD</i> , <i>BC</i> , <i>DF</i> or <i>BD</i> , <i>DF</i> , <i>BC</i>			arcs
	I wo shortest arcs from G total $0.45 + 0.65 = 1.1$ Lower bound = $0.5 + 1.1 = 1.6$ km			1.6 (aso) units not needed
	Lower bound $= 0.3 + 1.1 = 1.0$ km	AI		1.6 (cao) units not needed
				no mpnos mit, m
			[4]	

	(00 000 500 5000	3.7.1		
5(1)	$600x + 800y + 500 z \le 5000$	MI		Correct inequality, allow < for M mark only
	$\Rightarrow 6x + 8y + 5z < 50$	A1		Correct fully simplified form (cao)
	$120x + 80y + 120z \le 800$	M1		Correct inequality, allow < for M mark only
	$\Rightarrow 3x + 2y + 3z < 20$	A1	[4]	Correct fully simplified form (cao)
	<u> </u>		[4]	5 1 ()
	May use slack variables, provided they also			It slack variable form used and fully simplified but
	specify slack variables non-negative			without specifying that slack variables are non-negative,
	$\cos 6x + 9x + 5z + t = 50$ t $\propto 0 - M1$ A1			SC M1 A0 for each
	$eg 0x + \delta y + 3\zeta + i = 30, i \ge 0 = W11, A1$			Se WITTIO for each
(ii)				
	P x y z s t y RHS	M1		Objective row correct and three slack variables used
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			objective four confect <u>and</u> three shack variables used
	1 -100 -40 -120 0 0 0 0			
	0 12 20 15 1 0 0 60	A1		Three constraint rows correct (ft (i), if reasonable)
				Accept variations in order of rows and columns
				Condone P column missing here
				Condone r column missing here
(ii)				
	$(0, 15, 150, 5, 10, 20, 2, 6)^2$			
	$60 \div 15 = 4, 50 \div 5 = 10, 20 \div 3 = 6\frac{2}{3}$			
	Pivot on the 15 in the z column	B1		Correct pivot choice from <u>their z column</u>
	Now row $2 - row 2 + 15$	М1		Correct method for their pivot row seen (or implied from
	New 10w $2 = 10w 2 \div 13$	111		Confect method for <u>men</u> proof fow seen (or implied from
	New row $1 = row 1 + 120 \times new row 2$			<u>correct row</u> in tableau if no attempt seen)
	New row $3 = row 3 - 5 \times new row 2$	A1		Correct method for their three other rows seen as a
	1000000000000000000000000000000000000			formula
	New row $4 = row 4 - 3 \times new row 2$			Tormana
	P x y z s t μ RHS			Iterate to get a tableau with exactly four basis columns
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N / 1		and non-negative entries in final column in which the
		IVI I		value of the objective has not decreased
	$0 \frac{4}{5} \frac{1}{2} \frac{1}{2} \frac{1}{5} \frac{1}{5} 0 0 \frac{1}{5}$			value of the <u>objective has not decreased</u>
	$\begin{vmatrix} 0 \\ 2 \\ \end{vmatrix}$ $\begin{vmatrix} 1 \\ \frac{1}{3} \\ 0 \\ \end{vmatrix}$ $\begin{vmatrix} -\frac{1}{3} \\ 1 \\ 0 \\ \end{vmatrix}$ $\begin{vmatrix} 0 \\ 30 \\ 0 \\ \end{vmatrix}$	A 1		Values in final column correct (follow through)
		AI		
	$0 \frac{3}{5} -2 0 -\frac{1}{5} 0 1 8$			
	4 . 4 . 5 . 20 . 2 . 15 . 9 . 3 . 12]	B 1		Correct pivot choice for their second iteration
	$4 \div \frac{1}{5} = 5, \ 50 \div 2 = 15, \ 8 \div \frac{1}{5} = 15 \frac{1}{3}$	DI		Concer proof choice for their second heration
	Pivot on the $\frac{4}{2}$ in the r column			
	11100 on the 5 in the x column			
		M1		Correct method for their pivot row seen (or implied from
	New row 2 = row 2 ÷ $\frac{4}{5}$	1411		correct method for <u>then</u> prot fow seen (or implied from
	N			<u>correct row</u> in tableau if no attempt seen)
	New row $1 = row 1 + 4 \times new row 2$	A1		Correct method for their <u>three</u> other rows seen as a
	New row $3 = row 3 - 2 \times new row 2$			formula
	New row $1 - row 1 - \frac{3}{2} \times rew row 2$			
	$100 + 100 + -100 + - 5 \times 100 + 100 2$			
	$P \times v$ 7 S t u RHS	M1		Iterate to get a tableau with exactly four basis columns
				and non-negative entries in final column, in which the
	$\begin{vmatrix} 1 & 0 \end{vmatrix}$ $\begin{vmatrix} 126\frac{2}{3} \\ \hline 5 & 8\frac{1}{3} \\ \hline 0 & 0 \end{vmatrix}$ $\begin{vmatrix} 500 \\ \hline 500 \end{vmatrix}$			value of the objective bas not decreased
				variae of the <u>objective has not decreased</u>
	$0 1 \frac{1}{3} \frac{1}{4} \frac{1}{12} 0 0 5$			
	$-2 - 2^{\perp} - 1 - 1 - 20$	Δ1		Values in final column correct (follow through)
	0 0 -2 2 2 -2 1 0 20	111		
	$\begin{vmatrix} 0 & 0 \\ 3 & -\frac{3}{4} & -\frac{1}{4} & 0 \\ \end{vmatrix}$			
L		1		

	Make 5 litres of <i>fruit salad</i> only	B1	[13]	Interpretation of <u>their</u> final (non-negative) <u>x</u> , <u>y</u> and <u>z</u> , in context (need 'only' or equivalent; '5 <i>fruit salads</i> ' is not enough) x = 5, y = 0, z = 0 gives B0
(iii)				
	$60 \div 12 = 5, 50 \div 6 = 8\frac{1}{3}, 20 \div 3 = 6\frac{2}{3}$ Pivot on the 12 in the <i>x</i> column	B1		Correct pivot choice from their x column
	New row $2 = row 2 \div 12$	M1		Correct method for <u>their</u> pivot row (seen or implied from correct row in tableau)
	New row $1 = row 1 + 100 \times new row 2$	A1		Correct method for their <u>objective</u> row seen as a formula
	Showing that there are no negative entries in objective row Saying that optimum has been achieved ('no negatives in top row')	M1 A1	[5]	Showing that there are no negative entries in objective row Or achieving a final tableau, in one iteration, with exactly four basis columns and non-negative entries in final column, in which the value of the objective has not decreased

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

GCE

Mathematics

Advanced GCE 4737

Decision Mathematics 2

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

1	(i)	$A \qquad L \\ B \qquad M \\ D \qquad N \\ F \qquad O \\ G \qquad P \\ H \qquad Q$		B1	A correct bipartite graph	[1]
	(ii)	$A \bullet \qquad b \bullet b \bullet $		B1	A second bipartite graph showing the incomplete matching correctly No augmentations made, even if in pencil. Ignore the addition of an <i>X</i> vertex though.	[1]
	(iii)	H - P - G - Q Axe handle = Prof Mulberry Broomstick = Miss Olive Drainpipe = Mrs Lemon Fence post = Mr Nutmeg Golf club = Rev Quince Hammer = Capt Peach	A = M B = O D = L F = N G = Q H = P	B1 B1	This path in any reasonable form or in reverse. Accept <i>X</i> - <i>H</i> - <i>P</i> - <i>G</i> - <i>Q</i> Not any longer path from <i>H</i> to <i>Q</i> This complete matching written down (use initials of surnames if ambiguous, eg Rev Pineapple is interpreted as $P = \text{Capt Peach}$)	[2]
	(iv)	Axe handle = Rev QuinceBroomstick = Prof MulberryDrainpipe = Mr NutmegFence post = Miss OliveGolf club = Capt PeachHammer = Mrs Lemon	A = Q B = M D = N F = O G = P H = L	M1 A1	A different complete matching in any form A valid complete matching in which none of the suspects uses the same weapon as in their solution to (iii) Total =	[2]

Mark Scheme

$ \begin{array}{ c c c c c } \hline 1 & pm & 2 & pm & 3 & pm & 4 & pm & 5 & pm \\ \hline \hline R & 7 & 6 & 8 & 3 & 9 & pm \\ \hline \hline R & 7 & 6 & 3 & 7 & 5 & 7 & 7 \\ \hline \hline R & 2 & 6 & 3 & 7 & 5 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 2 & 3 & 6 & 7 & 7 \\ \hline \hline R & 2 & 0 & 4 & 4 & 4 & 4 \\ \hline \hline 2 & 0 & 4 & 4 & 4 & 4 \\ \hline \hline 2 & 0 & 4 & 4 & 4 & 5 & 7 \\ \hline \hline R & 2 & 0 & 4 & 4 & 4 & 5 & 7 \\ \hline \hline R & 2 & 0 & 4 & 4 & 4 & 5 & 7 \\ \hline \hline R & 2 & 0 & 4 & 4 & 4 & 5 & 7 \\ \hline \hline R & 2 & 0 & 4 & 4 & 4 & 5 & 7 \\ \hline \hline R & 2 & 0 & 3 & 4 & 4 & 0 & 2 & 7 \\ \hline \hline R & 2 & 0 & 3 & 4 & 4 & 0 & 2 & 7 \\ \hline \hline R & 2 & 0 & 3 & 4 & 4 & 0 & 2 & 7 \\ \hline \hline R & 2 & 0 & 3 & 4 & 4 & 0 & 2 & 7 \\ \hline \hline R & 2 & 0 & 3 & 4 & 4 & 0 & 2 & 7 \\ \hline \hline R & 2 & 3 & 2 & 0 & 2 & 7 & 7 \\ \hline \hline R & 2 & 3 & 2 & 0 & 2 & 7 & 7 \\ \hline \hline R & R & 2 & 3 & 2 & 0 & 2 & 7 & 7 \\ \hline \hline R & R & 2 & 3 & 2 & 0 & 2 & 7 \\ \hline \hline R & R & 2 & 3 & 2 & 0 & 2 & 7 & 7 \\ \hline \hline R & R & 2 & 3 & 2 & 0 & 2 & 7 & 7 \\ \hline \hline R & R & 2 & 3 & 2 & 0 & 2 & 7 & 7 \\ \hline \hline R & R & R & R & R & R & R & R & R &$	2	(i)									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1 pm	2 pm	3 pm	4 pm	5 pm			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			R	7	6	8	3	9	M1	Modify table by subtracting each	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			S	5	0	4	4	4		entry from a constant value	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Т	6	3	7	5	7			
Y 22367A1Correct table (e ths \pm a constant throughout, with no negative values)[2]Reduce rows $\frac{4}{3}$ $\frac{3}{5}$ $\frac{5}{0}$ $\frac{4}{4}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ <th></th> <th></th> <th>W</th> <th>4</th> <th>2</th> <th>6</th> <th>2</th> <th>7</th> <th></th> <th>~</th> <th></th>			W	4	2	6	2	7		~	
Reduce rows $\frac{4}{5}$ 3 5 0 6 $\frac{5}{5}$ 0 4 4 4 $\frac{1}{2}$ 0 4 2 4 2 0 1 4 5 Reduce columns $\frac{4}{5}$ 0 3 4 0 $\frac{1}{2}$ 0 3 4 0 2 $\frac{1}{2}$ 0 3 2 0 0 2 0 3 2 0 1 0 0 3 2 0 1 1 1 0 3 2 0 2 0 2 0 3 2 0 2 0 2 0 3 2 0 2 0 2 0 3 2 0 1 1 1 0 1 2 0 1 1 1 0 1 2 0 1 1 1 0 1 2 0 1 1 1 0 1 2 0 1 1 1 0 1 2 0 1 1 1 0 1			Y	2	2	3	6	7	A1	Correct table (ie this \pm a constant	[2]
Reduce rows $\frac{4}{3}$ $\frac{3}{5}$ $\frac{5}{4}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{6}$										throughout, with no negative values)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Reduce r	ows		1	1				
$\frac{5}{3} 0 4 4 4 4 4 4 4 4 4$			-	4	3	5	0	6	M1	Substantially correct attempt to	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			_	5	0	4	4	4	IVII	reduce rows	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			_	3	0	4	2	4		(at most 2 independent errors)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	2	0	4	0	5		(at most 2 macpendent errors)	
Reduce columns $\frac{4}{3}$ $\frac{4}{3}$ $\frac{4}{4}$ $\frac{0}{2}$ $\frac{2}{3}$ $\frac{3}{2}$ $\frac{0}{3}$ $\frac{2}{2}$ $\frac{1}{3}$ $\frac{4}{4}$ $\frac{1}{4}$ Cross out 0's using minimum no. of linesM1Substantially correct attempt to reduce cost matrix(at most 2 independent errors) $\frac{4}{5}$ $\frac{3}{3}$ $\frac{4}{4}$ $\frac{0}{4}$ $\frac{2}{2}$ $\frac{3}{2}$ 0 $\frac{3}{2}$ 0 1 AugmentM1Substantially correct attempt at augmenting (at most 2 errors)A1Augment $\frac{2}{3}$ $\frac{3}{2}$ $\frac{0}{4}$ 2 $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ 0 2 $\frac{1}{2}$ 0 1 2 0 1 <t< th=""><th></th><th></th><th></th><th>0</th><th>0</th><th>1</th><th>4</th><th>5</th><th></th><th></th><th></th></t<>				0	0	1	4	5			
Reduce columns $\frac{4}{5}$ $\overline{3}$ $\overline{4}$ $\overline{0}$ $\overline{3}$ $\overline{0}$ $\overline{3}$ $\overline{2}$ $\overline{0}$ $\overline{2}$ $\overline{0}$ $\overline{3}$ $\overline{2}$ $\overline{0}$ $\overline{2}$ $\overline{0}$ $\overline{3}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{1}$ $\overline{10}$ $\overline{0}$ $\overline{3}$ $\overline{4}$ $\overline{0}$ $\overline{2}$ $\overline{0}$ $\overline{3}$ $\overline{4}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{4}$ $\overline{0}$ $\overline{2}$ $\overline{0}$ $\overline{3}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{2}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{0}$			D. 1								
$\frac{4}{5} \frac{5}{0} \frac{4}{3} \frac{4}{0} \frac{1}{2} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{1} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{1} \frac{1}$			Keauce c		2	Α	0				
$\frac{3}{3} 0 3 2 0 1 \\ \hline 2 0 3 0 1 \\ \hline 0 0 0 4 1 \end{bmatrix}$ (1) $\frac{3}{2} 0 3 0 1 \\ \hline 0 0 0 4 1 \end{bmatrix}$ (2) $\frac{4}{5} 0 3 4 0 2 \\ \hline 5 0 3 4 0 2 \\ \hline 5 0 3 4 0 \\ \hline 3 0 3 2 0 \\ \hline 2 0 3 0 1 \\ \hline 0 0 0 4 1 \end{bmatrix}$ (3) (3) (3) (3) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) $(4$				4 5	<u> </u>	4	1				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			ŀ	2	0	2	4 2	0	M1	Substantially correct attempt to	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	2	0	3	2	1		reduce columns	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				<u> </u>	0	0		1		(at most 2 independent errors)	
Cross out 0's using minimum no. of lines A1 Their reduced cost matrix [3] $\frac{4}{5}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{0}{2}$ $\frac{2}{2}$ $\frac{1}{3}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{4}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ </th <th></th> <th></th> <th>L</th> <th>0</th> <th>0</th> <th>0</th> <th>4</th> <th>1</th> <th>A 1</th> <th></th> <th>[2]</th>			L	0	0	0	4	1	A 1		[2]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Cross ou	t O's usi	no minii	num no	of lines		AI	Their reduced cost matrix	[3]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			C1055 00	4	3	4	0	2			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	5	0	3	4	0			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	3	0	3	2	0 0			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	2	Ő	3	0	1			
AugmentMISubstantially correct attempt at augmenting (at most 2 errors)[2] $\frac{2}{3}$ $\frac{3}{0}$ $\frac{1}{4}$ $\frac{4}{0}$ $\frac{1}{2}$ $\frac{1}{0}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{0}$ $\frac{1}{2}$ $\frac{1}{0}$ $\frac{1}{2}$ $\frac{1}{0}$ $\frac{1}{2}$ $\frac{1}{1}$ <t< th=""><th></th><th></th><th></th><th>0</th><th>Ő</th><th>0</th><th>4</th><th>1</th><th></th><th></th><th></th></t<>				0	Ő	0	4	1			
AugmentM1Substantially correct attempt at augmenting (at most 2 errors)[2] 3 0 1 4 0 1 0 1 2 0 0 0 1 0 1 0 2 0 6 3 $\overline{10}$ 2 $\overline{0}$ 2 $\overline{5}$ 3 0 1 4 $\overline{10}$ 1 2 $\overline{0}$ $\overline{10}$ $$			-								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Augment	t							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				2	3	2	0	2	M 1	Substantially correct attempt at	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				3	0	1	4	0		augmenting (at most 2 errors)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				1	0	1	2	0			
$\begin{array}{ c c c c c c c c }\hline 0 & 2 & 0 & 6 & 3\\ \hline 1 \ pm & 2 \ pm & 3 \ pm & 4 \ pm & 5 \ pm \\ \hline \hline R & 2 & 3 & 2 & 0 & 2\\ \hline S & 3 & 0 & 1 & 4 & 0\\ \hline \hline T & 1 & 0 & 1 & 2 & 0\\ \hline \hline W & 0 & 0 & 1 & 0 & 1\\ \hline Y & 0 & 2 & 0 & 6 & 3\\ \hline \end{array}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$				0	0	1	0	1	A1	Their matrix augmented correctly to	[2]
$\begin{array}{ c c c c c c c c c }\hline & 1 & pm & 2 & pm & 3 & pm & 4 & pm & 5 & pm \\ \hline \hline R & 2 & 3 & 2 & 0 & 2 \\ \hline S & 3 & 0 & 1 & 4 & 0 \\ \hline \hline T & 1 & 0 & 1 & 2 & 0 \\ \hline \hline W & 0 & 0 & 1 & 0 & 1 \\ \hline Y & 0 & 2 & 0 & 6 & 3 \\ \hline \hline W & 0 & 0 & 1 & 0 & 1 \\ \hline Y & 0 & 2 & 0 & 6 & 3 \\ \hline \hline W & 0 & 0 & 1 & 0 & 1 \\ \hline W & 0 & 0 & 0 & 1 \\ \hline W & 0 & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 & 0 & 0 \\ \hline W & 0 &$				0	2	0	6	3		reach a complete matching	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 pm	2 pm	3 pm	4 pm	5 pm			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			R	2	3	2	0	2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			S	3	0	1	4	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Т	1	0	1	2	0			
Y02063Mrs Rowan= 4 pmor= 4 pmDr Silverbirch= 2 pmor= 5 pmMr Thorn= 5 pmor= 2 pmMs Willow= 1 pmor= 1 pmSgt Yew= 3 pmor= 3 pm			W	0	0	1	0	1			
Mrs Rowan $= 4 \text{ pm}$ or $= 4 \text{ pm}$ B1First matching, caoDr Silverbirch $= 2 \text{ pm}$ or $= 5 \text{ pm}$ B1First matching, caoMr Thorn $= 5 \text{ pm}$ or $= 2 \text{ pm}$ B1Second matching, caoMs Willow $= 1 \text{ pm}$ or $= 1 \text{ pm}$ B1Second matching, caoSgt Yew $= 3 \text{ pm}$ or $= 3 \text{ pm}$ E1Second matching, cao			Y	0	2	0	6	3			
Image: Normal condition of the problem $a = 4 \text{ pm}$ or $a = 4 \text{ pm}$ or $a = 4 \text{ pm}$ $b = 4 \text{ pm}$ or $a = 4 \text{ pm}$ $b = 1 \text{ pm}$ or $a = 5 \text{ pm}$ $B = 1 \text{ pm}$	1		Mag Da		1	- 1					
$B1 = \begin{bmatrix} D1 & Silver Dir Cir = 2 & pin & Oi = 3 & pin \\ Mr & Thorn & = 5 & pm & or = 2 & pm \\ Ms & Willow & = 1 & pm & or = 1 & pm \\ Sgt & Yew & = 3 & pm & or = 3 & pm \end{bmatrix} B1 = B1 $ Second matching, cao $[2]$	1		Dr Cil	an =	4 pm (r = 4 pr	11 1		B1	First matching, cao	
$\begin{array}{c cccc} & \text{In Finite - 5 pin of - 2 pin } \\ & \text{Ms Willow} & = 1 \text{ pm } \text{ or } = 1 \text{ pm } \\ & \text{Sgt Yew} & = 3 \text{ pm } \text{ or } = 3 \text{ pm } \end{array} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Mr Thor	=	$\sim \text{pm}$ (or = 2 pr	ц а				
Sgt Yew = 3 pm or = 3 pm [2]			Ms Wille	- w	1 pm	n = 2 pm	n		B1	Second matching, cao	
			Sgt Yew	=	3 pm	r = 3 pr	n				[0]
			~8.100	_	- r (5 ph					[2]
D1 Eollow through their metakings [1]		(ii)	Mr Thom	n					D1	Follow through their metabings	[1]
(ii) I'll follow unough their matchings [1] (but not to S)	1	(11)	IVII I HOFI	1					DI	(but not to S)	[1]
Total = 10		1							1	Total =	10

3	(i)	Stage	State	Action	Working	Suboptimal minima	B1	Structure of table correct (stage,	
		∣ 	0	0	5	5		state, action and 'working'	
		3	1	0	4	4	M1	columns)	
		1	2	0	6	6	A1	Stage and state values correct	[3]
			0	0	5 + 5 = 10	10		Action values correct	
		1		1	6 + 4 = 10	10	M1	Working column substantially	
		2	1	0	3 + 5 = 8	8		correct for stage 2 (calcs or totals)	
		1		1	5 + 4 = 9			(at most 1 error)	
		1	2	1	3 + 4 = 7	7	A1	Suboptimal minima (10, 8, 7)	[2]
		∣┣───	<u> </u>	2	2 + 6 = 8	ļ		correct for stage 2 (cao)	
		1	0	0	2+10 = 12				
				1	3+8=11	11	M1	Working column substantially	
			1		2+8=10	10	1411	correct for stage 1(at most 1 error)	
		1		2	3 + 7 = 10	10	A1	Suboptimal minima (11, 10, 15)	[2]
		 	2	2	8 + 7 = 15	15		correct for stage 1 (cao)	
			0	1	6 + 11 = 1/ 8 + 10 - 18	1/			
			U	2	3 + 10 = 10 3 + 15 = 18				
		<u>ا</u> الـــــــــــــــــــــــــــــــــــ		2	5 + 15 - 10				
		Minimu	m route	e = (0;0)	- (1:0) - (2:1)	- (3:0) - (4:0)			
		Weight	= 17		(1,-, ,	(0,-) (-,-)	B1	Correct route from $(0; 0)$ to $(4; 0)$	[2]
							B1	17 cao (written down, not just	L J
		1						implied from table)	
		<u> </u>							
	(ii)	Start at	the bott	com of the	e table at (0; 0))			
		Optimu	m for st	tage 0 con	mes from actio	on 0,			
		so $(0; 0)$	connection for (cts to (1;	0)	- 1	MI	Start at $(0; 0)$, action 0 or value 11	
		$s_{0}(1,0)$	In tor (1	1; 0) com ete to (2)	1)	11,		(then's), hence (1, 0)	
		Optimu	m for (2:1) com	1) res from action	10	Al	(1:0), action 1 (theirs), hence $(2:1)$	
		so (2; 1)) conne	cts to $(3;$	0) and hence	to (4; 0)	1	Clearly relating <u>action</u> to state for	[2]
		1						stage above	
								Total =	11

4	(i)	In each game, whatever combination of strategies is chosen the total number of points won is zero	R1	Points won by Euan equals points lost by Wai Mai, and vice versa, in	[1]
		enoson, no tom number of points won is zero	DI	every case	[-]
	(ii)	-2	B1	Loses 2	[1]
	(iii)	Z is dominated by Y	M1	Idea of dominance by <i>Y</i>	
		In each row she loses more by choosing <i>Z</i> than <i>Y</i> $-3 < 5$, $-4 < 3$, $-2 < 5$ and $1 < 2$ (or equivalent)	A1	Four valid comparisons <u>and</u> a convincing explanation (or equivalent in words)	[2]
	(iv)	Wai Mai X Y row min A 2 -5 B -1 -3 C 3 -5 D 3 -2 col max 3 -2 $*$ *	M1	Determining row minima and column maxima, or equivalent (may be implied from both <i>D</i> and <i>Y</i> stated)	
		Play-safe for Euan is D Play-safe for Wai Mai is Y Game is stable,	A1 A1 B1	D, stated (not just identified in table)Y, stated (not just identified in table)Stable, with a valid reason attempted	[4]
		since row maximin = col minimax, $-2 = -2$		(numerical or in words) (www)	
	(v)	A: $-2p + 5(1-p) = 5 - 7p$ B: $p + 3(1-p) = 3 - 2p$	M1	Any one correct (or negative of correct) simplified or not	
		$\begin{array}{l} D: p + 5(1 p) = 5 - 2p \\ C: -3p + 5(1 - p) = 5 - 8p \\ D: 5p + 2(1 - p) = 2 + 3p \end{array}$	A1	All four correct (or negative of correct) and simplified	
		(note: leaving DX as 3 gives D : 2 - 5 p = M1A0A0)	A1	All four correct and simplified	[3]
	(vi)	5 4 2 1 1 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.7 0.9 1 0.9	M1 A1	Graph paper used with sensible scales Their equations plotted correctly	[2]
		2 + 3p = 3 - 2p $\Rightarrow p = 0.2$	M1 A1	Solving correct pair, or from graph 0.2, cao, from correct equations used (algebraically or from graph) (www)	[2]
				Total =	15

ANSWERED ON INSERT

~ /	21+30 +7 +18	IVI I	Evidence of using the correct cut $(1, 21)$	
	= 82	A1	$(eg \ 21 \ (\pm 23) + 36 + 7 + 18 \ seen)$ 82	[2]
(ii)	At most 17 can leave <i>C</i> so there cannot be as much as 20 or 18 entering it	B1	17 < both 20 and 18 (NOT 17 < 38)	
	At most 17 can enter <i>E</i> so there cannot be $7 + 18$ = 25 leaving it	B1	17 < 7 + 18	[2]
	Maximum that can flow in arc <i>HT</i> is 33 Flow along arc $HG = 0$	B1 B1	33 0	[2]
(iii)	A diagram showing a flow of 58 in which amount in equals amount out at each vertex, apart from S and T	M1	Assume that "blanks" mean 0 or full to capacity, provided consistent	
	Arcs <i>CE</i> , <i>FH</i> and <i>GT</i> are saturated and other arc capacities are not exceeded	A1		
	Cut $X = \{S, A, B, C, D, F, G\}$, $Y = \{E, H, T\}$ Or cut through <i>GT</i> , <i>GH</i> , <i>FH</i> , <i>EF</i> and <i>CE</i>	B 1	This cut presented in any form (accept it drawn on diagram)	[3]
(iv)	Substantially correct attempt in which excess capacities and potential backflows marked correctly on arcs <i>CE</i> , <i>FH</i> and <i>GT</i>	M1	Assume that blanks mean 0 Accept <u>all</u> directions swapped	
	Their excess capacities and potential backflows marked correctly on arcs out of <i>S</i> and arcs into <i>T</i> and on <i>HG</i>	A1	Check directions on <u><i>HG</i></u> carefully If no flow in (iii), or ambiguous, then any valid flow > 0 labelled correctly gets M1, but must also be a flow of 58 to get A1	[2]
(v)	Feasible route(s) written that send an additional 2 through system (or more on follow through)	M1	Routes must be written out properly eg route <i>SBFGHT</i> by 2	
	All route(s) valid with an additional 2 along <i>GH</i>	A1		[2]
(vi)	Their flow from part (iii) augmented by their routes in part (v)	M1	Follow through if possible	
	No more can flow across the cut $X = \{S, C\}, Y = \{A, B, D, E, F, G, H, T\}$	A1	Any reasonable explanation	[2]
			Total =	15

PARTS (i), (ii) AND (iii) ANSWERED ON INSERT

6	(i)						
		Activity	Duration	Predecessors			
		A	6	-			
		В	5	-			
		С	3	A, B			
		D	9	Α			
		E	4	A, B			
		F	2	A, B	B1	Predecessors correct for A to F	
		G	2	E, H		(entries for A and B may be blank)	
		Н	3	C, F			
		Ι	5	D, G	MI	Substantially correct attempt at	
		J	6	E, H		predecessors for other activities	
		K	10	C, F		(at most 2 errors)	
		L	4	I	A 1		
		М	12	Ι	AI	Predecessors all correct for G to N	
		N	6	J. K. L			[2]
			-	- 7 7			[3]
	(**)						
	(11)	Dummy is needed	between 2 and	3 so that C, E	D 1	D door not fallow D	
		and F follow both	A and B but D	follows A only	ві	D does not follow B	
		.				(D follows A only)	
		Dummy 1s needed	between 4 and	5 so that C and	D1	Identifying C and E appropriately	
		F do not share bot	th a common sta	art and a common	DI	Identifying C and F appropriately	[2]
		finish					[4]
	(:::)						
	(III)				P 1	Early event times correct in table	
					M1	Substantially correct backwards pass	
			9 12 13	5 20 24 32	1011	(at most 2 errors in total)	
			0 10 13 15	5 20 26 32	A1	Late event times correct in table	
					111	Late event times correct, in tuble	
		Minimum and a st		22		22	
		Critical activities	Completion time	e = 32 minutes	BI	32, cao	
		Chucai activities.	A, D, T and M		BI	A, D, I, M and no others, cao	[5]
				1	1/1		
	(iv)	Early event time a	at 9 becomes the	e larger of 24 and	MI	9+x	
		9+x			AI	Larger of 24 and $9+x$	
		Early event time a	at 10 becomes the	ne larger of 32 and	N (1		
		15+x, which then	also becomes th	e late event time	MI	Considering the event times at 10	
		at 10					
		Late event time at	9 then become	s 26 or 9+ <i>x</i>	A1	Correct consideration of 26 and $9+x$	
							[4]
	(v)	<i>x</i> = 17			B1	17	[1]
						Total =	15

6

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010