A Level

Mathematics

Session:	2010 June
Type:	Mark scheme
Code:	$3890-7890 ; 3892-7892$
Units:	$4721 ; 4722 ; 4723 ; 4724 ; 4725 ; 4726 ; 4727 ;$
	$4728 ; 4729 ; 4730 ; 4731 ; 4732 ; 4733 ; 4734 ;$
	$4735 ; 4736 ; 4737$

© UCLES

GCE

Mathematics

Advanced Subsidiary GCE 4721

Core Mathematics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|c|}
\hline 4 (i) \& $$
\left(x^{2}-4 x+4\right)(x+1)
$$
$$
=x^{3}-3 x^{2}+4
$$ \& M1

A1

A1 \& 3 \& | Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^{3} term) |
| :--- |
| Expansion with at most 1 incorrect term |
| Correct, simplified answer |

\hline (ii) \& \& | B1 |
| :--- |
| B1 |
| B1 | \& 3

6 \& | +ve cubic with 2 or 3 roots |
| :--- |
| Intercept of curve labelled $(0,4)$ or indicated on y-axis |
| $(-1,0)$ and turning point at $(2,0)$ labelled or indicated on x-axis and no other x intercepts |

\hline 5 \& $$
\begin{aligned}
& k=x^{2} \\
& 4 k^{2}+3 k-1=0 \\
& (4 k-1)(k+1)=0 \\
& k=\frac{1}{4}(\text { or } k=-1) \\
& x= \pm \frac{1}{2}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \text { M1* } \\
& \text { M1 } \\
& \text { dep } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \& | Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^{2} |
| :--- |
| Correct method to solve a quadratic |
| Attempt to square root to obtain x $\pm \frac{1}{2}$ and no other values |

\hline 6 \& $$
\begin{aligned}
& y=2 x+6 x^{-\frac{1}{2}} \\
& \frac{d y}{d x}=2-3 x^{-\frac{3}{2}}
\end{aligned}
$$

\[
$$
\begin{aligned}
\text { When } x=4, \text { gradient } & =2-\frac{3}{\sqrt{4^{3}}} \\
& =\frac{13}{8}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 A1 |
| M1 |
| A1 | \& 5

5 \& | Attempt to differentiate |
| :--- |
| $k x^{-\frac{3}{2}}$ |
| Completely correct expression (no +c) |
| Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$ |

\hline 7 \& \[
$$
\begin{aligned}
& 2(6-2 y)^{2}+y^{2}=57 \\
& 2\left(36-24 y+4 y^{2}\right)+y^{2}=57 \\
& 9 y^{2}-48 y+15=0 \\
& 3 y^{2}-16 y+5=0 \\
& (3 y-1)(y-5)=0 \\
& y=\frac{1}{3} \text { or } y=5 \\
& x=\frac{16}{3} \text { or } x=-4
\end{aligned}
$$

\] \& | M1* |
| :---: |
| A1 |
| A1 |
| A1 |
| M1 |
| M ${ }^{\text {dep }}$ |
| A1 |
| A1 | \& \& | substitute for x / y or attempt to get an equation in 1 variable only correct unsimplified expression |
| :--- |
| obtain correct 3 term quadratic |
| correct method to solve 3 term quadratic |
| SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1 |

\hline
\end{tabular}

$\mathbf{1 0 (i)}$	$\begin{aligned} & \frac{d y}{d x}=6 x^{2}+10 x-4 \\ & 6 x^{2}+10 x-4=0 \\ & 2\left(3 x^{2}+5 x-2\right)=0 \\ & (3 x-1)(x+2)=0 \\ & x=\frac{1}{3} \text { or } x=-2 \\ & y=-\frac{19}{27} \text { or } y=12 \end{aligned}$	B1 B1 M1* M1 dep* A1 A1		1 term correct Completely correct (no +c) Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Correct method to solve quadratic SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1
	$-2<x<\frac{1}{3}$		2	Any inequality (or inequalities) involving both their x values from part (i) Allow $<$ and $>$
(iii)	When $x=\frac{1}{2}, 6 x^{2}+10 x-4=\frac{5}{2}$ and $2 x^{3}+5 x^{2}-4 x=-\frac{1}{2}$ $y+\frac{1}{2}=\frac{5}{2}\left(x-\frac{1}{2}\right)$ $10 x-4 y-7=0$	$\begin{array}{r}\text { M1 } \\ \text { B1 } \\ \text { M1 } \\ \\ \\ \hline \text { A1 }\end{array}$		Substitute $x=\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Correct y coordinate Correct equation of straight line using their values. Must use their $\frac{d y}{d x}$ value not e.g. the negative reciprocal Shows rearrangement to given equation CWO throughout for A1

B1

B1

Sketch of a cubic with a tangent which meets it at 2 points only
+ve cubic with \max / min points and line with + ve gradient as tangent to the curve to the right of the min

SC1

B1 Convincing algebra to show that the cubic
$8 x^{3}+20 x^{2}-26 x+7=0$ factorises into $(2 x-1)(2 x-1)(x+7)$
B1 Correct argument to say there are 2 distinct roots
SC2 B1 Recognising y $=2.5 x-7 / 4$ is tangent from part (iii)
B1 As second B1 on main scheme

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Mathematics

Advanced Subsidiary GCE 4722
Core Mathematics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i)	$\begin{aligned} & \mathrm{f}(2)=8+4 a-2 a-14 \\ & 2 a-6=0 \\ & a=3 \end{aligned}$	M1*		Attempt $f(2)$ or equiv, including inspection / long division / coefficient matching
		M1d* A1	3	Equate attempt at $f(2)$, or attempt at remainder, to 0 and attempt to solve Obtain $a=3$
(ii)	$\begin{aligned} f(-1) & =-1+3+3-14 \\ & =-9 \end{aligned}$	M1		Attempt $f(-1)$ or equiv, including inspection / long division / coefficient matching
		A1 ft	2	Obtain -9 (or $2 a-15$, following their a)
			5	
2 (i)	$\begin{aligned} \text { area } & \approx \frac{1}{2} \times 3 \times(\sqrt[3]{8}+2(\sqrt[3]{11}+\sqrt[3]{14})+\sqrt[3]{17}) \\ & \approx 20.8 \end{aligned}$	B1		State or imply at least 3 of the 4 correct y-coords , and no others
		M1		Use correct trapezium rule, any h, to find area between $x=1$ and $x=10$
		M1		Correct h (soi) for their y-values - must be at equal intervals
		A1	4	Obtain 20.8 (allow 20.7)
(ii)	use more strips / narrower strips	B1	1	Any mention of increasing n or decreasing h
3 (i)	$(1+1 / 2 x)^{10}=1+5 x+11.25 x^{2}+15 x^{3}$	B1		Obtain $1+5 x$
		M1		Attempt at least the third (or fourth) term of the binomial expansion, including coeffs
		A1		Obtain 11.25x ${ }^{2}$
		A1		Obtain $15 x^{3}$
(ii)	$\begin{aligned} \text { coeff of } x^{3} & =(3 \times 15)+(4 \times 11.25)+(2 \times 5) \\ & =100 \end{aligned}$	M1		Attempt at least one relevant term, with or without powers of x
		A1 ft		Obtain correct (unsimplified) terms (not necessarily summed) - either coefficients or still with powers of x involved
		A1	3	Obtain 100
			7	

4 (i) $u_{1}=6, u_{2}=11, u_{3}=16$
B1 1 State $6,11,16$

6 a \quad	$\int_{3}^{5}\left(x^{2}+4 x\right) \mathrm{d} x=\left[\frac{1}{3} x^{3}+2 x^{2}\right]_{3}^{5}$
	$=\left({ }^{125} / 3+50\right)-(9+18)$
	$=64 \frac{2}{3}$

M1
A1
M1 Use limits $x=3,5$ - correct order \& subtraction

A1 $\quad 4$ Obtain $64^{2} / 3$ or any exact equiv
b $\quad \int(2-6 \sqrt{y}) \mathrm{d} y=2 y-4 y^{\frac{3}{2}}+c$
B1

M1 Obtain $k y^{\frac{3}{2}}$
A1 3 Obtain $-4 y^{\frac{3}{2}}$ (condone absence of $+c$)

B1
M1
A1

A1 ft 4 Obtain 4 (or $-k$ following their $k x^{-2}$)
11
7 (i) $\frac{\sin ^{2} x-\cos ^{2} x}{1-\sin ^{2} x}=\frac{\sin ^{2} x-\cos ^{2} x}{\cos ^{2} x}$

$$
=\frac{\sin ^{2} x}{\cos ^{2} x}-\frac{\cos ^{2} x}{\cos ^{2} x}
$$

$$
=\tan ^{2} x-1 \quad \text { A1 }
$$

(ii) $\tan ^{2} x-1=5-\tan x$ $\tan ^{2} x+\tan x-6=0$ $(\tan x-2)(\tan x+3)=0$ $\tan x=2, \tan x=-3$ $x=63.4^{\circ}, 243^{\circ} \quad x=108^{\circ}, 288^{\circ}$

A1

A1 2 Use other identity to obtain given answer convincingly.
Use either $\sin ^{2} x+\cos ^{2} x=1$, or $\tan x=\sin x / \cos x$

State correct equation
Attempt to solve three term quadratic in $\tan x$

Obtain 2 and -3 as roots of their quadratic
Attempt to solve $\tan x=k$ (at least one root)

Obtain at least 2 correct roots
Obtain all 4 correct roots

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: $\quad 01223552610$
E-mail:
publications@ocr.org.uk

1 (i) Attempt use of product rule
M1 producing ... $+\ldots$ form
Obtain $3 x^{2} \mathrm{e}^{2 x}+2 x^{3} \mathrm{e}^{2 x}$
A1 2 or equiv
(ii) Attempt use of chain rule to produce $\frac{k x}{3+2 x^{2}}$ form Obtain $\frac{4 x}{3+2 x^{2}}$ M1 any constant k A1 2
(iii) Attempt use of quotient rule

M1 or equiv; condone u / v confusions
Obtain $\frac{2 x+1-2 x}{(2 x+1)^{2}}$ or $(2 x+1)^{-1}-2 x(2 x+1)^{-2}$
A1 2 or (unsimplified) equiv
[If $\ldots+c$ included in all three parts and all three parts otherwise correct, award M1A1, M1A1, M1A0; otherwise ignore any inclusion of $\ldots+c$.]

6

2 (i) Obtain one of $\pm \ln (\pm x \pm 4)$
Obtain correct equation $y=-\ln (x-4)$
M1
A1 2 or equiv; condone use of modulus signs instead of brackets
(ii) State, in any order, S, S and T

State T, then S, then S

M1 or equiv such as S^{2}, T or $2 \mathrm{~S}, \mathrm{~T}$
A1 2 or equiv (note that S, S, T^{9} and S, T^{3}, S are alternative correct answers)

4

B1

M1 using $\cos 2 \theta= \pm 1 \pm 2 \sin ^{2} \theta$ or equiv
A1 3 or $-6 \sin ^{2} \theta+11 \sin \theta+10=0$

A1 allow -42 or greater accuracy
A1 3 or greater accuracy; and no others between -180 and 180

4 (i) Either: Integrate to obtain $k \ln x$
Use at least one relevant logarithm property
Obtain $k \ln 3=\ln 81$ and hence $k=4$

B1
M1
A1 3 AG ; accurate work required

Or 1: (where solution involves no use of a logarithm property)

Integrate to obtain $k \ln x$ B1
Obtain correct explicit expression for k and conclude $k=4$ with no error seen

B2 3 AG ; e.g. $k=\frac{\ln 81}{\ln 6-\ln 2}=4$
Or 2: (where solution involves verification of result by initial substitution of 4 for k)

Integrate to obtain $4 \ln x$
Use at least one relevant logarithm property
Obtain $\ln 81$ legitimately with no error seen
(ii) State volume involves $\int \pi\left(\frac{4}{x}\right)^{2} \mathrm{~d} x$

Obtain integral of form $k_{1} x^{-1}$
Use correct process for finding volume produced from S

Obtain $16 \pi-\frac{16}{3} \pi$ and hence $\frac{32}{3} \pi$

B1 possibly implied
M1 any constant k_{1} including π or not
M1 $\quad \int\left(k_{2} 2^{2}-k_{3} y^{2}\right) \mathrm{d} x$, including π or not with correct limits indicated; or equiv
A1 4 or exact equiv
7

M1 squaring both sides to obtain 3 terms on each side or considering 2 different linear eqns/inequalities
A1
A1
M1 table, sketch, ...; needs two critical values; implied by plausible answer
A1 5 with \leq and not $<$
(ii) Use correct process to find value of $|x+2|$ using any value M1 \ldots whether part of answer to (i) or not

Obtain $2 \frac{2}{3}$ or $\frac{8}{3}$

A1 2 dependent on 5 marks awarded in part (i) 7

6 (i) Attempt calculations involving 1.0 and 1.1
Obtain -0.57 and 0.76
Refer to sign change (or equiv for rearranged eqn)
(ii) Obtain correct first iterate

Carry out iteration process
Obtain at least 3 correct iterates
Obtain 1.05083

M1 using radians
A1 or values to 1 dp (rounded or truncated); or equivs (where eqn rearranged)
A1 3 AG; following correct work only
$[1 \rightarrow 1.047198 \rightarrow 1.050571 \rightarrow 1.050809 \rightarrow 1.050826 \rightarrow 1.050827$;
$1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827 \rightarrow 1.050827$;
$1.1 \rightarrow 1.054268 \rightarrow 1.051070 \rightarrow 1.050844 \rightarrow 1.050829 \rightarrow 1.050827]$
(iii) State or imply $\sec ^{2} 2 x=1+\tan ^{2} 2 x$

Relate to earlier equation
B1
M1 by halving or doubling answer to (ii) or carrying out equivalent iteration process
Deduce $2 x=1.05083$ and hence 0.525
A1 $\sqrt{ } 3$ following their answer to (ii); or greater accuracy
[SC: Rearrange to obtain $x=\frac{1}{2} \cos ^{-1}(2 x+3)^{-\frac{1}{2}}$
Use iterative process to obtain 0.525

B1 using value x_{1} such that $1.0 \leq x_{1} \leq 1.1$
M1 obtaining at least 3 iterates in all so far
A1 showing at least 3 dp
A1 4 answer required to exactly 5 d.p.

B1
B1 2 or greater accuracy]
10
$7 \quad$ Differentiate to obtain $k_{1}(3 x-1)^{3}$
Obtain correct $12(3 x-1)^{3}$
Substitute 1 to obtain 96
Attempt to find x-coordinate of Q
Obtain $\frac{5}{6}$

Integrate to obtain $k_{2}(3 x-1)^{5}$
Obtain correct $\frac{1}{15}(3 x-1)^{5}$
Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$
Attempt to find shaded area by correct process
Obtain $\left(\frac{32}{15}-\frac{1}{2} \times \frac{1}{6} \times 16\right.$ and hence) $\frac{4}{5}$

M1 any constant k_{1}
A1 or (unsimplified) equiv
A1
M1 using tangent with $y=0$ or using gradient
A1 or exact equiv

M1 any constant k_{2}
A1 or (unsimplified) equiv
A1
M1 integral - triangle or equiv
A1 or equiv

8 (i) Obtain $R=3 \sqrt{2}$ or $R=\sqrt{18}$ or $R=4.24$
Attempt to find value of α
Obtain $\frac{1}{4} \pi$ or 0.785

B1 or equiv
M1 condone sin/cos muddles and degrees
A1 3 in radians now
(ii) a Equate $x-\alpha$ to $\frac{1}{2} \pi$ or attempt solution
of $3 \cos x+3 \sin x=0$
Obtain $\frac{3}{4} \pi$
M1 condone degrees here
A1 2 or $\ldots,-\frac{5}{4} \pi,-\frac{1}{4} \pi, \frac{7}{4} \pi, \ldots$; in radians now
b Attempt correct process to find value of $3 x-\alpha$
Obtain at least one correct exact value of $3 x-\alpha$
Attempt at least one positive value of x
Obtain $\frac{1}{36} \pi$
*M1 with attempt at rearranging $\mathrm{T}(3 x)=\frac{8}{9} \sqrt{6}$
A1 $\pm \frac{1}{6} \pi, \pm \frac{11}{6} \pi, \ldots$
M1 $\quad \operatorname{dep}$ *M
A1 4
9

9 (i) Attempt to find x-coord of staty point or complete square M

Obtain $\left(\frac{3}{2},-9\right)$ or $4\left(x-\frac{3}{2}\right)^{2}-9$ or -9
State $f(x) \geq-9$

A1 3 using any notation; with \geq
(ii) Make one correct (perhaps general) relevant statement

B1 not $1-1$, f is many-one, \ldots; maybe implied if attempt is specific to this f
Conclude with correct evidence related to this f
B1 2 AG; (more or less) correct sketch; correct relevant calculations, ...
(iii) Either: Attempt to find expression for g^{-1}

Obtain $\frac{1}{a}(x-b)$
Compare $\frac{1}{a}(x-b)$ and $a x+b$
*M1 or equiv
A1 or equiv
M1 dep *M; by equating either coefficients of x or constant terms (or both); or substituting two non-zero values of x and solving eqns for a
Obtain at least $-\frac{b}{a}=b$ and hence $a=-1$
A1 4 AG ; necessary detail required; or equiv
[SC1: first two steps as above, then substitute $a=-1$: max possible M1A1B1]
[SC2: substitute $a=-1$ at start: Attempt to find inverse M1 Obtain $-x+b$ and conclude A1 2]
Or: \quad State or imply that $y=\mathrm{g}^{-1}(x)$ is reflection
of $y=\mathrm{g}(x)$ in line $y=x$
State that line unchanged by this reflection is perpendicular to $y=x$
Conclude that a is -1

B1

M2
A1 4
(iv) State or imply that $\mathrm{gf}(x)=-\left(4 x^{2}-12 x\right)+b$

Attempt use of discriminant or relate to range of f Obtain $64+16 b<0$ or $9+b<5$
Obtain $b<-4$

B1
M1 or equiv
A1 or equiv
A1 4
13

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

GCE

Mathematics

Advanced GCE 4724/01
Core Mathematics 4

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 First 2 terms in expansion $=1-5 x$
$3^{\text {rd }}$ term shown as $\frac{-\frac{5}{3} \cdot-\frac{8}{3}}{2}(3 x)^{2}$
$=+20 x^{2}$
$4^{\text {th }}$ term shown as $\frac{-\frac{5}{3} \cdot-\frac{8}{3} \cdot-\frac{11}{3}}{2.3}(3 x)^{3}$
$=-\frac{220}{3} x^{3}$ ISW
A1 Accept $-\frac{440}{6} x^{3}$ ISW
N.B. If 0 , SR B2 to be awarded for $1-\frac{5}{3} x+\frac{20}{9} x^{2}-\frac{220}{81} x^{3}$. Do not mark $(1+x)^{-5 / 3}$ as a MR.

Attempt quotient rule
M1
[Show fraction with denom $(1-\sin x)^{2} \&$ num $+/-(1-\sin x)+/-\sin x+/-\cos x+/-\cos x$]
Numerator $=(1-\sin x) .-\sin x-\cos x .-\cos x$
A1 terms in any order
\{ Product symbols must be clear or implied by further work \}

Reduce correct numerator to $1-\sin x$
Simplify to $\frac{1}{1-\sin x}$ ISW
$\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}$
$A(x-1)(x-2)+B(x-2)+C(x-1)^{2} \equiv x^{2}$
$A=-3$
$B=-1$
$C=4$

B1 or $-\sin x+\sin ^{2} x+\cos ^{2} x$
A1 Accept $-\frac{1}{\sin x-1}$
4
M1 For correct format

M1
A1
A1 (B1 if cover-up rule used)
A1 (B1 if cover-up rule used)
[NB1: Partial fractions need not be written out; correct format + correct values sufficient.
NB2: Having obtained $B \& C$ by cover-up rule, candidates may substitute into general expression \& algebraically manipulate; the M1 \& A1 are then available if deserved.]

These special cases using different formats are the only other ones to be considered Max $\frac{A}{x-1}+\frac{B x+C}{(x-1)^{2}}+\frac{D}{x-2} ;$ M1 M1; A0 for any values of $A, B \& C$, A1 or B1 for $D=4 \quad 3$ $\frac{A x+B}{(x-1)^{2}}+\frac{C}{x-2} ; \quad$ M0 M1; A1 for $A=-3 \underline{\text { and }} B=2, \quad$ A1 or B1 for $C=4 \quad 3$

4

5
$\frac{\mathrm{d}}{\mathrm{d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \quad$ s.o.i.
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$\mathrm{d} x=2 u \mathrm{~d} u$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2}(x+2)^{-\frac{1}{2}} \quad$ AEF
$\frac{652}{15}$ or $43 \frac{7}{15}$

Att by diff to connect $\mathrm{d} x \& \mathrm{~d} u$ or find $\frac{\mathrm{d} x}{\mathrm{~d} u}$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}$ (not $\mathrm{d} x=\mathrm{d} \underline{\text { u }}$ M1 \quad no accuracy; not 'by parts' A1

A1 May be implied later

M1
\{If relevant, cancel u / u and $\}$ attempt to square out $\left\{\operatorname{dep} \int k \mathrm{I}(\mathrm{d} u)\right.$ where $k=2$ or $\frac{1}{2}$ or 1 and $\mathrm{I}=\left(u^{2}-2\right)^{2}$ or $\left(2-u^{2}\right)^{2}$ or $\left.\left(\mathrm{u}^{2}+2\right)^{2}\right\}$

Att to change limits if working with $\mathrm{f}(u)$ after integration
or re-subst into integral attempt and use $-1 \& 7$

Indef integ $=\frac{2}{5} u^{5}+/-\frac{8}{3} u^{3}+8 u$ or $\frac{1}{10} u^{5}+/-\frac{2}{3} u^{3}+2 u \quad \mathrm{~A} 1$ or $\frac{1}{5} u^{5}+/-\frac{4}{3} u^{3}+4 u$

ISW but no ' +c '
Diff eqn($=0$ can be implied)(solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and) put $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \mathrm{M} 1$
Produce only $2 x+4 y=0$ (though AEF acceptable)
*A1 without any error seen
Eliminate x or y from curve eqn \& eqn(s) just produced M1
Produce either $x^{2}=36$ or $y^{2}=9$
dep* A1 Disregard other solutions dep* A1 Sign aspect must be clear
$(\pm 6, \mp 3) \mathrm{AEF}$, as the only answer ISW

6 (i) State/imply scalar product of any two vectors $=0$
Scalar product of correct two vectors $=4+2 a-6$
$a=1$
(ii) (a) Attempt to produce at least two relevant equations

Solve two not containing ' a ' for s and t
Obtain at least one of $s=-\frac{1}{2}, t=1$
Substitute in third equation \& produce $a=-2$
(b) Method for finding magnitude of any vector

Using $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \boldsymbol{b} \mid}$ for the pair of direction vectors
$107,108(107.548)$ or $72,73,72.4,72.5(72.4516)$ c.a.o. A1 $3 \underline{1.87,1.88(1.87707) \text { or } 1.26}$

7 (i) Differentiate x as a quotient, $\frac{v \mathrm{~d} u-u \mathrm{~d} v}{v^{2}}$ or $\frac{u \mathrm{~d} v-v \mathrm{~d} u}{v^{2}}$ M1 or product clearly defined
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{(t+1)^{2}} \quad$ or $\frac{-1}{(t+1)^{2}} \quad$ or $-(t+1)^{-2}$
A1 $\quad W W W \rightarrow 2$
$\frac{\mathrm{d} y}{\mathrm{~d} t}=-\frac{2}{(t+3)^{2}}$ or $\frac{-2}{(t+3)^{2}}$ or $-2(t+3)^{-2}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} t}{\mathrm{~d} t}}$
M1 quoted/implied and used
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2(t+1)^{2}}{(t+3)^{2}} \quad$ or $\frac{2(t+3)^{-2}}{(t+1)^{-2}} \quad\left(\operatorname{dep} 1^{\text {st }} 4\right.$ marks $) * A 1 \quad$ ignore ref $t=-1, t=-3$
State squares +ve or $(t+1)^{2} \&(\mathrm{t}+3)^{2}+\mathrm{ve} \therefore \frac{\mathrm{d} y}{\mathrm{~d} x}+\mathrm{ve} \quad$ dep*A1 6 or $\left(\frac{t+1}{t+3}\right)^{2}+\mathrm{ve}$. Ignore ≥ 0
(ii) Attempt to obtain t from either the x or y equation M1 No accuracy required $t=\frac{2-x}{x-1} \quad$ AEF \quad or $\quad t=\frac{2}{y}-3 \quad$ AEF
A1

Substitute in the equation not yet used in this part
M1 or equate the 2 values of t
Use correct meth to eliminate ('double-decker') fractions M1
Obtain $2 x+y=2 x y+2$ ISW AEF
A15 but not involving fractions

8 (i) Long division method
Evidence of division process as far as $1^{1 t}$ stage incl sub
M1 $\equiv Q(x-1)+R$
(Quotient =) $x-4$
A1 $\quad Q=x-4$
(Remainder $=$) 2 ISW
(ii) (a) Separate variables; $\int \frac{1}{y-5} \mathrm{~d} y=\int \frac{x^{2}-5 x+6}{x-1} \mathrm{~d} x$ A1 $3 R=2$; N.B. might be B1 Change $\frac{x^{2}-5 x+6}{x-1}$ into their (Quotient $+\frac{\text { Rem }}{x-1}$)

M1 ' \int ' may be implied later M1
$\ln (y-5)=\sqrt{ }$ (integration of their previous result) $(+c)$ ISW $\sqrt{ }$ A1 3 f.t. if using Quot $+\frac{\text { Rem }}{x-1}$
(ii) (b) Substitute $y=7, x=8$ into their eqn containing ' c '

M1 $\quad \&$ attempt ' c ' $\left(-3.2, \ln \frac{2}{49}\right)$
Substitute $x=6$ and their value of ' c '
$y=5.00 \quad(5.002529) \quad$ Also $5+\frac{50}{49} \mathrm{e}^{-6}$
M1 \& attempt to find y

Beware: any wrong working anywhere $\rightarrow \mathrm{A} 0$ even if answer is one of the acceptable ones.

9 (i) Attempt to multiply out $(x+\cos 2 x)^{2}$
Finding $\int 2 x \cos 2 x \mathrm{~d} x$
Use $u=2 x, \mathrm{~d} v=\cos 2 x$
$1^{\text {st }}$ stage $x \sin 2 x-\int \sin 2 x \mathrm{~d} x$
$\therefore \int 2 x \cos 2 x \mathrm{~d} x=x \sin 2 x+\frac{1}{2} \cos 2 x$
Finding $\int \cos ^{2} 2 x \mathrm{~d} x$
Change to $k \int+/-1+/-\cos 4 x \mathrm{~d} x$
Correct version $\frac{1}{2} \int 1+\cos 4 x \mathrm{~d} x$
$\int \cos 4 x \mathrm{~d} x=\frac{1}{4} \sin 4 x$
Result $=\frac{1}{2} x+\frac{1}{8} \sin 4 x$
(i) ans $=\frac{1}{3} x^{3}+x \sin 2 x+\frac{1}{2} \cos 2 x+\frac{1}{2} x+\frac{1}{8} \sin 4 x(+\mathrm{c})$

M1 where $k=\frac{1}{2}, 2$ or 1

A1

B1 seen anywhere in this part
(ii) $\quad \mathrm{V}=\pi \int_{0}^{\frac{1}{2} \pi}(x+\cos 2 x)^{2}(\mathrm{~d} x)$

Use limits $0 \& \frac{1}{2} \pi$ correctly on their (i) answer
M1
(i) correct value $=\frac{1}{24} \pi^{3}-\frac{1}{2}+\frac{1}{4} \pi-\frac{1}{2}$

Final answer $=\pi\left(\frac{1}{24} \pi^{3}+\frac{1}{4} \pi-1\right)$
A1 4 c.a.o. No follow-through

13

Alternative methods

2 If $y=\frac{\cos x}{1-\sin x}$ is changed into $y(1-\sin x)=\cos x$, award
M1 for clear use of the product rule (though possibly trig differentiation inaccurate)
A1 for $-y \cos x+(1-\sin x) \frac{d y}{d x}=-\sin x$
AEF
B1 for reducing to a fraction with $1-\sin x$ or $-\sin x+\sin ^{2} x+\cos ^{2} x$ in the numerator
A1 for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$

If $y=\frac{\cos x}{1-\sin x}$ is changed into $y=\cos x(1-\sin x)^{-1}$, award
M1 for clear use of the product rule (though possibly trig differentiation inaccurate)
A1 for $\left(\frac{d y}{d x}\right)=\cos ^{2} x(1-\sin x)^{-2}+(1-\sin x)^{-1} .-\sin x \quad$ AEF

B1 for reducing to a fraction with $1-\sin x$ or $-\sin x+\sin ^{2} x+\cos ^{2} x$ in the numerator
A1 for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$
6(ii)(a) If candidates use some long drawn-out method to find ' a ' instead of the direct route, allow
M1 as before, for producing the 3 equations
M1 for any satisfactory method which will/does produce ' a ', however involved
A2 for $a=-2$
7(ii) Marks for obtaining this Cartesian equation are not available in part (i).
If part (ii) is done first and then part (i) is attempted using the Cartesian equation, award marks as follow:
Method 1 where candidates differentiate implicitly
M1 for attempt at implicit differentiation
A1 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-2}{1-2 x}$ AEF
M1 for substituting parametric values of x and y
A2 for simplifying to $\frac{2(t+1)^{2}}{(t+3)^{2}}$
A1 for finish as in original method
Method 2 where candidates manipulate the Cartesian equation to find $x=$ or $y=$
M1 for attempt to re-arrange so that either $y=\mathrm{f}(x)$ or $x=\mathrm{g}(y)$
A1 for correct $y=\frac{2-2 x}{1-2 x}$ AEF or $x=\frac{2-y}{2-2 y} \quad$ AEF
M1 for differentiating as a quotient
A2 for obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{(1-2 x)^{2}}$ or $\frac{(2-2 y)^{2}}{2}$
A1 for finish as in original method
8(ii)(b) If definite integrals are used, then
M2 for []$_{y}^{7}=[]_{6}^{8}$ or equivalent or M1 for []$_{7}^{y}=[]_{6}^{8}$ or equivalent

A2
for $5,5.0,5.00(5.002529)$ with caveat as in main scheme dep M $\underline{2}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

RECOGNISING ACHIEVEMENT

GCE

Mathematics

Advanced GCE 4725

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1

B1 Establish result true for $n=1$ or $n=2$
M1 Add next term to given sum formula
M1 Attempt to factorise or expand and simplify to correct expression
A1 Correct expression obtained
A1 5 Specific statement of induction conclusion

5

M1 Obtain a single value
A1 2 Obtain correct answer as a matrix
(ii) $\quad \mathrm{BA}=\left(\begin{array}{ll}5 & -20 \\ 3 & -12\end{array}\right)$

$$
\left(\begin{array}{ll}
-7 & -20 \\
11 & -20
\end{array}\right)
$$

M1 Obtain a 2×2 matrix

A1 All elements correct
B1 4C seen or implied by correct answer
B1ft 4 Obtain correct answer, ft for a slip in BA

3
Either
$\frac{2}{3} n(n+1)(2 n+1)-2 n(n+1)+n$
$\frac{1}{3} n(2 n-1)(2 n+1)$
Or
$\sum_{r=1}^{2 n} r^{2}-4 \sum_{r=1}^{n} r^{2}$
$\frac{1}{6} \times 2 n(2 n+1)(4 n+1)-4 \times \frac{1}{6} n(n+1)(2 n+1)$
$\frac{1}{3} n(2 n-1)(2 n+1)$

M1 Express as a sum of 3 terms
M1 Use standard sum results

A1 Correct unsimplified answer
M1 Attempt to factorise
A1 Obtain at least factor of n and a quadratic
A1 6 Obtain correct answer a.e.f.

M1 Express as difference of $2 \sum r^{2}$ series
M1 Use standard result
A1 Correct unsimplified answer
M1 Attempt to factorise
A1 Obtain at least factor of n

A1 Obtain correct answer
4
(i) $5+12 \mathrm{i}$
13
67.4° or 1.18

B1B1 Correct real and imaginary parts
B1ft Correct modulus
B1ft 4 Correct argument
(ii)
M1 Multiply by conjugate
A1 Obtain correct numerator
$-\frac{11}{85}-\frac{27}{85} \mathrm{i}$
A1 3 Obtain correct denominator
7
$5 \quad$ (a) $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
B1B12 Each column correct
SC B2 use correct matrix from MF1 Can be trig form
(b) (i)

B1B12 Stretch, in x-direction sf 5
(ii)

B1B12 Rotation, 60° clockwise
6
$6 \quad$ (i) $\quad \begin{aligned} & \text { (a) } \\ & \text { (b) }\end{aligned}$
B1B12 Circle centre (3, -4), through origin
B1B12 Vertical line, clearly $x=3$
(ii)

B1ft Inside their circle
B1ft 2 And to right of their line, if vertical
6

7

Either
$\alpha+\beta=-2 k \quad \alpha \beta=k$
$y^{2}-4 k y+4 k=0$
Or
$\alpha+\beta=-2 k$
$\frac{-2 k}{\alpha}$
$y=\frac{-2 k}{x}$
$y^{2}-4 k y+4 k=0$
Or
$-k \pm \sqrt{k^{2}-k}$
$\frac{\alpha+\beta}{\alpha}=\frac{2 k}{k+\sqrt{k^{2}-k}}, \frac{\alpha+\beta}{\beta}=\frac{2 k}{k-\sqrt{k^{2}-k}}$
$y^{2}-4 k y+4 k=0$

B1B1 State or use correct results
M1 Attempt to find sum of new roots
A1 Obtain $4 k$
M1 Attempt to find product of new roots
A1 Obtain $4 k$
B1ft 7 Correct quadratic equation a.e.f.

B1 State or use correct result
B1 State or imply form of new roots
B1 State correct substitution
M1 Rearrange and substitute for x
A1 Correct unsimplified equation
M1 Attempt to clear fractions
A1 Correct quadratic equation a.e.f.

B1 Find roots of original equation

B1 Express both new roots in terms of k

M1 Attempt to find sum of new roots
A1 Obtain $4 k$
M1 Attempt to find product of new roots
A1 Obtain $4 k$
$\mathrm{B} 1 \mathrm{ft} \quad$ Correct quadratic equation a.e.f.
8 (i)
M1 Attempt to rationalise denominator or cross multiply
A1 2 Obtain given answer correctly

(ii) | | M1 | Express terms as differences using (i) |
| :--- | :--- | :--- |
| | M1 | Attempt this for at least 1 $1^{\text {st }}$ three terms |
| | A1 | $1^{\text {st }}$ three terms all correct |
| | A1 | Last two terms all correct |
| | M1 | Show pairs cancelling |
| | A1 $(\sqrt{n+2}+\sqrt{n+1}-\sqrt{2}-1)$ | A1 |

(iii)

B1 $\mathbf{1}$ Sensible statement for divergence 9

$9 \quad$ (i)
M1 Show correct expansion process for 3×3
M1 Correct evaluation of any 2×2
$\operatorname{det} \mathbf{A}=a^{2}-a$
A1 3 Obtain correct answer
(ii) (a)
(b)
(c)

B1 6 State unique solution
SC if detA incorrect, can score 2 marks
for correct deduction of a unique solution, but only once
$10 \quad$ (i)

$$
\begin{aligned}
& x^{2}-y^{2}=3 \quad x y=2 \\
& z=2+i
\end{aligned}
$$

M1 Attempt to equate real and imaginary parts
A1 Obtain both results
M1 Eliminate to obtain quadratic in x^{2} or y^{2}
M1 Solve to obtain x or y value
A1 5 Obtain correct answer as a complex no.
(ii)
(iii)

$$
w^{3}=2 \pm 11 \mathrm{i}
$$

$w=2-\mathrm{i}$

B1 1 Obtain given answer correctly

M1 Attempt to solve quadratic equation
A1 Obtain correct answers
M1 Choose negative sign
M1 Relate required value to conjugate of (i)
A1 5 Obtain correct answer
11

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

GCE

Mathematics

Advanced GCE 4726

Further Pure Mathematics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 Derive/quote $\mathrm{g}^{\prime}(x)=p /\left(1+x^{2}\right)$
Attempt $\mathrm{f}^{\prime}(x)$ as $a /\left(1+b x^{2}\right)$
Use $x=1 / 2$ to set up a solvable equation in p, leading to at least one solution Get $p=5 / 4$ only

2 Reasonable attempt at $\mathrm{e}^{2 x}\left(1+2 x+2 x^{2}\right)$
Multiply out their expressions to get all terms up to x^{2}
Get $1+3 x+4 x^{2}$
Use binomial, equate coefficients to get 2 solvable equations in a and n
Reasonable attempt to eliminate a or n
Get $n=9, a=1 / 3$ cwo

B1

M1 Allow any $a, b=2$ or 4

M1
A1 AEEF
M1 3 terms of the form $1+2 x+a x^{2}, a \neq 0$
M1 (3 terms) x (minimum of 2 terms)
A1 cao
Reasonable attempt at binomial, each term
M1 involving a and $n\left(a n=3, a^{2} n(n-1) / 2=4\right)$
M1
A1 cao
SC Reasonable $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$ using
product rule (2 terms)
Use their expressions to find $f^{\prime}(0)$ and $f^{\prime \prime}(0) \quad$ M1
Get $1+3 x+4 x^{2}$ cao A1

B1

M1 From their expressions
A1

M1
A1 $\sqrt{ }$ Must involve $\sqrt{ } 3$
A1 A.G.
(ii)

B1 Correct shape in $-1<x \leq 3$ only (allow just top or bottom half)

B1 90° (at $x=3$) (must cross x-axis i.e. symmetry)
B1 Asymptote at $x=-1$ only (allow -1 seen)
B1 $\sqrt{ }$ Correct crossing points; $\pm \sqrt{ }(b / c)$ from their b, c

5 (i) Reasonable attempt at parts
Get $\mathrm{e}^{x}(1-2 x)^{n}-\int \mathrm{e}^{x} \cdot n(1-2 x)^{n-1} .-2 \mathrm{~d} x$
Evidence of limits used in integrated part Tidy to A.G.
(ii) Show any one of $I_{3}=6 I_{2}-1, I_{2}=4 I_{1}-1$, $I_{1}=2 I_{0}-1$
Get $I_{0}\left(=\mathrm{e}^{1 / 2}-1\right)$ or $I_{1}\left(=2 \mathrm{e}^{1 / 2}-3\right)$
Substitute their values back for their I_{3} Get $48 \mathrm{e}^{1 / 2}-79$

6 (i) Reasonable attempt to differentiate $\sinh y=x$ to get $\mathrm{d} y / \mathrm{d} x$ in terms of y Replace $\sinh y$ to A.G.
(ii) Reasonable attempt at chain rule Get $\mathrm{d} y / \mathrm{d} x=a \sinh \left(a \sinh ^{-1} x\right) / \sqrt{ }\left(x^{2}+1\right)$
Reasonable attempt at product/quotient Get $\mathrm{d}^{2} y / \mathrm{d} x^{2}$ correctly in some form Substitute in and clearly get A.G.

M1 Leading to second integral
A1 Or $(1-2 x)^{n+1} /(-2(n+1)) \mathrm{e}^{x}$ $-\int(1-2 x)^{n+1} /(-2(n+1)) \mathrm{e}^{x} \mathrm{~d} x$
M1 Should show ± 1
A1 Allow $I_{n+1}=2(n+1) I_{n}-1$

B1 May be implied
B1
M1 Not involving n A1

M1 Allow $\pm \cosh y \mathrm{~d} y / \mathrm{d} x=1$
A1 Clearly use $\cosh ^{2}-\sinh ^{2}=1$
SC Attempt to diff. $y=\ln \left(x+\sqrt{ }\left(x^{2}+1\right)\right)$ using chain rule

M1
Clearly tidy to A.G. A1
M1 To give a product
A1
M1 Must involve sinh and cosh
$\mathrm{A} 1 \sqrt{ }$ From $\mathrm{d} y / \mathrm{d} x=k \sinh \left(a \sinh ^{-1} x\right) / \sqrt{ }\left(x^{2}+1\right)$
A1
SC Write $\sqrt{ }\left(x^{2}+1\right) \mathrm{d} y / \mathrm{d} x=k \sinh \left(a \sinh ^{-1} x\right)$ or similar Derive the A.G.

B1 $\sqrt{ }$ Any 3(minimum) correct from previous value
B1 Allow one B1 for 5.24 seen if 2 d.p.used
(ii) Show reasonable staircase for any region B1 Drawn curve to line Describe any one of the three cases
Describe all three cases

B1
B1
(iii) Reasonable attempt to use log/expo. rules M1 Allow derivation either way

Clearly get A.G.
Attempt $\mathrm{f}^{\prime}(x)$ and use at least once in correct N-R formula
Get answers that lead to 1.31
(iv) Show $\mathrm{f}^{\prime}(\ln 36)=0$

Explain why N-R would not work

A1 Minimum of 2 answers; allow truncation/rounding to at least 3 d.p.

B1
B1 Tangent parallel to $O x$ would not meet $O x$ again or divide by 0 gives an error

8 (i) Use correct definition of $\cosh x$
Attempt to cube their definition involving e^{x} and e^{-x} (or $\mathrm{e}^{2 x}$ and e^{x}) Put their 4 terms into LHS and attempt to simplify
Clearly get A.G.
(ii) Rewrite as $k \cosh 3 x=13$

Use ln equivalent on $13 / k$

Get $x=(\pm) 1 / 3 \ln 5$
Replace in $\cosh x$ for u
Use $\mathrm{e}^{a \ln b}=b^{a}$ at least once
Get $1 / 2\left(5^{1 / 3}+5^{-1 / 3}\right)$
9 (i) Attempt integral as $k(2 x+1)^{1.5}$
Get 9
Attempt subtraction of areas Get 3
(ii) Use $r^{2}=x^{2}+y^{2}$ and $x=r \cos \theta, y=r \sin \theta$

Eliminate x and y to produce quadratic equation (=0) in $r($ or $\cos \theta)$ Solve their quadratic to get r in terms of θ
(or vice versa)
Clearly get A.G.
Clearly show $\theta_{1}($ at $B)=\tan ^{-1} 3 / 4$ and $\theta_{2}($ at $A)=\pi$

A1 $r>0$ may be assumed

B1

SC Eliminate y to get r in terms of x only M1 Get $r=x+1$

A1
SC Start with $r=1 /(1-\cos \theta)$ and derive cartesian
B1 cwo; ignore limits
M1 Not just quoted
M1 To get $\int=$ some constant
A1 A.G.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE[III

[IIIIIIIIMathematics

Advanced GCE 4727

Further Pure Mathematics 3

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
\(\left.\begin{array}{l}\text { Direction of } l_{1}=k[7,0,-10] \\ \text { Direction of } l_{2}=k[1,3,-1]\end{array}\right\}\) \\
EITHER \(\mathbf{n}=[7,0,-10] \times[1,3,-1]\)
\[
\begin{aligned}
O R\left\{\begin{aligned}
{[x, y, z] \cdot[7,0,-10]=0 } \& \Rightarrow 7 x-10 z=0 \\
{[x, y, z] \cdot[1,3,-1]=0 } \& \Rightarrow x+3 y-z=0
\end{aligned}\right. \\
\Rightarrow \mathbf{n}=k[10,-1,7]
\end{aligned}
\]
\end{tabular} \& B1
M1

A1 \& | For both directions |
| :--- |
| For finding vector product of directions of l_{1} and l_{2} |
| OR for using 2 scalar products and obtaining equations |
| For correct \mathbf{n} |

\hline \& | METHOD 1 |
| :--- |
| Vector $(\mathbf{a}-\mathbf{b})$ from l_{1} to $l_{2}= \pm[4,6,-10]$ $\begin{aligned} & O R \pm[-4,3,1] \text { OR } \pm[3,3,-9] \text { OR } \pm[-3,6,0] \\ & d=\frac{\|(\mathbf{a}-\mathbf{b}) \cdot \mathbf{n}\|}{\|\mathbf{n}\|}=\frac{36}{\sqrt{150}} \\ & d=\frac{6}{5} \sqrt{6} \approx 2.94 \end{aligned}$ | \& | B1 |
| :--- |
| M1* |
| M1 |
| (*dep) |
| A1 7 | \& | For a correct vector |
| :--- |
| For finding ($\mathbf{a}-\mathbf{b}$). \mathbf{n} |
| For $\|\mathbf{n}\|$ in denominator $O R$ for using $\hat{\mathbf{n}}$ |
| For correct distance AEF |

\hline \& METHOD 2 Planes containing l_{1} and l_{2} perp. to \mathbf{n} are $\mathbf{r} .[10,-1,7]=p_{1}=70, \mathbf{r} .[10,-1,7]=p_{2}=34$ $\Rightarrow d=\frac{|70-34|}{\sqrt{150}}=\frac{36}{\sqrt{150}}=\frac{6}{5} \sqrt{6} \approx 2.94$ \& | M1* |
| :--- |
| B1 |
| M1 |
| (*dep) |
| A1 | \& | For finding planes and $p_{1}-p_{2}$ seen For $p_{1}=70 k$ and $p_{2}=34 k$ |
| :--- |
| For $\|\mathbf{n}\|$ in denominator $O R$ for using $\hat{\mathbf{n}}$ |
| For correct distance AEF |

\hline \& METHOD 3 \& | B1 |
| :--- |
| M1* |
| M1 |
| (*dep) |
| A1 | \& | For correct points on l_{1} and l_{2} using different parameters |
| :--- |
| For setting up 3 linear equations from $\mathbf{r}_{1}+\alpha \mathbf{n}=\mathbf{r}_{2}$ and solving for α |
| For $\|\mathbf{n}\|$ seen multiplying α |
| For correct distance AEF |

\hline \& \& 7 \&

\hline
\end{tabular}

2 (i) $a r=r^{5} a \Rightarrow r a r=r^{6} a$
$r^{6}=e \Rightarrow r a r=a$
M1 Pre-multiply $a r=r^{5} a$ by r
A1 2 Use $r^{6}=e$ and obtain answer AG
(ii) METHOD 1

For $n=1, r a r=a$ OR For $n=0, r^{0} a r^{0}=a$
B1 For stating true for $n=1 O R$ for $n=0$
Assume $r^{k} a r^{k}=a$
EITHER Assumption $\Rightarrow r^{k+1} a r^{k+1}=r a r=a$
M1 \quad For attempt to prove true for $k+1$
OR $\quad r^{k+1} a r^{k+1}=r . r^{k} a r^{k} . r=r a r=a$
OR $\quad r^{k+1} a r^{k+1}=r^{k}$. rar $\cdot r^{k}=r^{k} a r^{k}=a$
A1 For obtaining correct form
Hence true for all $n \in \mathbb{Z}^{+}$
A1 4 For statement of induction conclusion
METHOD 2
$r^{2} a r^{2}=r . r a r . r=r a r=a$, similarly for
M1 For attempt to prove for $n=2,3$
$r^{3} a r^{3}=a$
$r^{4} a r^{4}=r \cdot r^{3} a r^{3} \cdot r=r a r=a$,
A1 \quad For proving true for $n=2,3,4,5$
similarly for $r^{5} a r^{5}=a$
$r^{6} a r^{6}=e a e=a$
B1 For showing true for $n=6$
For $n>6, r^{n}=r^{n \bmod 6}$, hence true for all $n \in \mathbb{Z}^{+} \quad$ A1
METHOD 3
$r^{n} a r^{n}=r^{n-1} \cdot$.rar. r^{n-1}
M1 Starting from n, for attempt to prove true for $n-1$
OR $r^{n} a r^{n}=r^{n} \cdot r^{5} a \cdot r^{n-1}=r^{n+5} a r^{n-1}$
$=r^{n-1} a r^{n-1}$
$=r^{n-2} a r^{n-2}=\ldots$
For proving true for $n-1$
A1 For continuation from $n-2$ downwards
$=r a r=a$
For final use of $\operatorname{rar}=a$
SR can be done in reverse

METHOD 4

$a r=r^{5} a \Rightarrow a r^{2}=r^{5} a r=r^{10} a$ etc.
$\Rightarrow a r^{n}=r^{5 n} a$
$\Rightarrow r^{n} a r^{n}=r^{6 n} a$
$=e a=a$
M1 \quad For attempt to derive $a r^{n}=r^{5 n} a$
A1 For correct equation
SR may be stated without proof
B1 For pre-multiplication by r^{n}
A1 \quad For obtaining $a\left(r^{6}=e\right.$ may be implied $)$

3
(i) $w^{2}=\cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi$
$w^{3}=\cos \frac{6}{5} \pi+\mathrm{i} \sin \frac{6}{5} \pi$
$w^{*}=\cos \frac{2}{5} \pi-\mathrm{i} \sin \frac{2}{5} \pi$
$=\cos \frac{8}{5} \pi+\mathrm{i} \sin \frac{8}{5} \pi$
(ii)

(iii) $\quad z^{5}-1=0$ OR $z^{5}+z^{4}+z^{3}+z^{2}+z=0$

Allow cis $\frac{k}{5} \pi$ and $\mathrm{e}^{\frac{\mathrm{k}}{5} \pi \mathrm{i}}$ throughout
B1 For correct value
B1 For correct value
B1 For w^{*} seen or implied
B1 4 For correct value
SR For exponential form with i missing, award B0 first time, allow others

B1* For $1+w$ in approximately correct position
B1 For $A B \approx B C \approx C D$
(*dep)
B1 For $B C, C D$ equally inclined to Im axis
(*dep)
B1 4 For E at the origin
Allow points joined by arcs, or not joined Labels not essential

B1 1 For correct equation AEF (in any variable) Allow factorised forms using w, exp or trig

9

4
(i) $y=x z \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=z+x \frac{\mathrm{~d} z}{\mathrm{~d} x}$
$\Rightarrow x z+x^{2} \frac{\mathrm{~d} z}{\mathrm{~d} x}-x z=x \cos z \Rightarrow x \frac{\mathrm{~d} z}{\mathrm{~d} x}=\cos z$
$\Rightarrow \int \sec z \mathrm{~d} z=\int \frac{1}{x} \mathrm{~d} x$
$\Rightarrow \ln (\sec z+\tan z)=\ln k x$
$O R \ln \tan \left(\frac{1}{2} z+\frac{1}{4} \pi\right)=\ln k x$
$\Rightarrow \sec \left(\frac{y}{x}\right)+\tan \left(\frac{y}{x}\right)=k x$
OR $\tan \left(\frac{y}{2 x}+\frac{1}{4} \pi\right)=k x$
(ii) $\quad(4, \pi) \Rightarrow \sec \frac{1}{4} \pi+\tan \frac{1}{4} \pi=4 k$

$$
O R \tan \left(\frac{1}{8} \pi+\frac{1}{4} \pi\right)=4 k
$$

$$
\Rightarrow \sec \left(\frac{y}{x}\right)+\tan \left(\frac{y}{x}\right)=\frac{1}{4}(1+\sqrt{2}) x
$$

$$
\text { OR } \tan \left(\frac{y}{2 x}+\frac{1}{4} \pi\right)=\left(\frac{1}{4} \tan \frac{3}{8} \pi\right) x \text { or } \frac{1}{4}(1+\sqrt{2}) x
$$

B1 For correct differentiation of substitution
M1 For substituting into DE
A1 For DE in variables separable form
M1 For attempt at integration to \ln form on LHS

A1 For correct integration (k not required here)

A1 6 For correct solution
AEF including RHS $=\mathrm{e}^{(\ln x)+c}$

M1 \quad For substituting $(4, \pi)$
into their solution (with k)
A1 2 For correct solution AEF
Allow decimal equivalent $0.60355 x$
Allow $\mathrm{e}^{\ln x}$ for x

5 (i) $C+\mathrm{i} S=1+\frac{1}{2} \mathrm{e}^{\mathrm{i} \theta}+\frac{1}{4} \mathrm{e}^{2 \mathrm{i} \theta}+\frac{1}{8} \mathrm{e}^{3 \mathrm{i} \theta}+\ldots$

$$
=\frac{1}{1-\frac{1}{2} \mathrm{e}^{\mathrm{i} \theta}}=\frac{2}{2-\mathrm{e}^{\mathrm{i} \theta}}
$$

(ii)

$$
\begin{aligned}
& C+\mathrm{i} S=\frac{2\left(2-\mathrm{e}^{-\mathrm{i} \theta}\right)}{\left(2-\mathrm{e}^{\mathrm{i} \theta}\right)\left(2-\mathrm{e}^{-\mathrm{i} \theta}\right)} \\
& =\frac{4-2 \mathrm{e}^{-\mathrm{i} \theta}}{4-2\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)+1}=\frac{4-2 \cos \theta+2 \mathrm{i} \sin \theta}{4-4 \cos \theta+1} \\
& \Rightarrow C=\frac{4-2 \cos \theta}{5-4 \cos \theta}, \quad S=\frac{2 \sin \theta}{5-4 \cos \theta}
\end{aligned}
$$

M1 For using $\cos n \theta+i \sin n \theta=\mathrm{e}^{\mathrm{i} n \theta}$
at least once for $n \geqslant 2$
A1 For correct series
M1 For using sum of infinite GP
A1 $\mathbf{4}$ For correct expression AG
SR For omission of 1st stage award up to M0 A0 M1 A1 OEW

M1 For multiplying top and bottom by complex conjugate

For reverting to $\cos \theta$ and $\sin \theta$ and equating $\operatorname{Re} O R \operatorname{Im}$ parts

A1 For correct expression for C AG
A1 4
For correct expression for S

6 (i) Aux. equation $m^{2}+2 m+17(=0)$
$\Rightarrow m=-1 \pm 4 \mathrm{i}$
CF $(y=) \mathrm{e}^{-x}(A \cos 4 x+B \sin 4 x)$

PI $(y=) p x+q \Rightarrow 2 p+17(p x+q)=17 x+36$
$\Rightarrow p=1$
and $q=2$
GS $y=\mathrm{e}^{-x}(A \cos 4 x+B \sin 4 x)+x+2$
(ii) $\quad x \gg 0 \Rightarrow \mathrm{e}^{-x} \rightarrow 0$ OR very small
$\Rightarrow y=x+2$ approximately

For attempting to solve correct auxiliary equation A1 For correct roots
$\mathrm{A} 1 \sqrt{ } \quad$ For correct CF (allow $A_{\sin }^{\cos }(4 x+\varepsilon)$)
(trig terms required, not $\mathrm{e}^{ \pm 4 \mathrm{i} x}$)
f.t. from their m with 2 arbitrary constants

M1 For stating and substituting PI of correct form
For correct value of p
For correct value of q
For GS. f.t. from their CF + PI with
2 arbitrary constants in CF and none in PI.
Requires $y=$.
B1 For correct statement. Allow graph
B1 $\sqrt{2}$ For correct equation
Allow \approx, \rightarrow and in words
Allow relevant f.t. from linear part of GS

7 (i) $(1,3,5)$ and $(5,2,5) \Rightarrow \pm[4,-1,0]$ in Π
$\mathbf{n}=[2,-2,3] \times[4,-1,0]=k[1,4,2]$
$\Rightarrow \mathbf{r} .[1,4,2]=23$
(ii) METHOD 1

Perpendicular to Π through $(-7,-3,0)$ meets Π
where $(-7+k)+4(-3+4 k)+2(2 k)=23$
$\Rightarrow k=2 \Rightarrow d=2 \sqrt{1^{2}+4^{2}+2^{2}}=2 \sqrt{21} \approx 9.165$
METHOD 2

M1 \quad For finding a vector in Π
M1 For finding vector product of direction vectors of l and a line in Π
A1 For correct \mathbf{n}
A1 4 For correct equation. Allow multiples
M1 For using perpendicular from point on l to Π
Award mark for $k \mathbf{n}$ used
M1 For substituting parametric line coords into Π
M1 For normalising the \mathbf{n} used in this part
A1 $\mathbf{4}$ For correct distance AEF
Π is $x+4 y+2 z=23$
$\Rightarrow d=\frac{|(-7)+4(-3)+2(0)-23|}{\sqrt{1^{2}+4^{2}+2^{2}}}=2 \sqrt{21} \approx 9.165$

METHOD 3

$\mathbf{m}=[1,3,5]-[-7,-3,0]=(\pm)[8,6,5]$
$O R=[5,2,5]-[-7,-3,0]=(\pm)[12,5,5]$
$\Rightarrow d=\frac{\mathbf{m} \cdot[1,4,2]}{\sqrt{1^{2}+4^{2}+2^{2}}}=\frac{42}{\sqrt{21}}=2 \sqrt{21} \approx 9.165$

METHOD 4

$[-7,-3,0]+k[1,4,2]=[1,3,5]+s[2,-2,3]+t[4,-1,0]$ M1

M1 For setting up and solving 3 equations

M1 For normalising the \mathbf{n} used in this part A1 For correct distance AEF

METHOD 5

$d_{1}=\frac{23}{\sqrt{1^{2}+4^{2}+2^{2}}}=\frac{23}{\sqrt{21}}$
M1 For attempt to find distance from O to Π
M1 $\quad \begin{aligned} & \text { For attempt to find distance from } O \text { to } \Pi \\ & O R \text { from } O \text { to parallel plane containing } l\end{aligned}$
$d_{2}=\frac{[-7,-3,0] \cdot[1,4,2]}{\sqrt{1^{2}+4^{2}+2^{2}}}=\frac{-19}{\sqrt{21}}$
M1 For normalising the \mathbf{n} used in this part
M1 For finding $d_{1}-d_{2}$
$\Rightarrow d_{1}-d_{2}=d=\frac{23-(-19)}{\sqrt{21}}=2 \sqrt{21} \approx 9.165$
(iii) $(-7,-3,0)+k(1,4,2)$

Use $k=4$
$\mathbf{b}=[2,-2,3]$
$\mathbf{a}=[-3,13,8]$
$\mathbf{r}=[-3,13,8]+t[2,-2,3]$
M1 For substituting a point on l into plane equation
For normalising the \mathbf{n} used in this part For correct distance AEF
A1

M1 For finding a vector from l to Π

M1 For finding m.n
M1 For normalising the \mathbf{n} used in this part
A1 For correct distance AEF
As Method 1, using parametric form of Π
For using perpendicular from point on l to Π
Award mark for $k \mathbf{n}$ used
$\left.\begin{array}{ll}k-2 s-4 t & =8 \\ 4 k+2 s+t & =6 \\ 2 k-3 s & =5\end{array}\right\} \Rightarrow k=2 \quad\left(s=-\frac{1}{3}, t=-\frac{4}{3}\right)$
$\Rightarrow d=2 \sqrt{1^{2}+4^{2}+2^{2}}=2 \sqrt{21} \approx 9.165$

A1 For correct distance AEF
M1 State or imply coordinates of a point on the reflected line
State or imply $2 \times$ distance from (ii)
Allow $k= \pm 4$ OR $\pm 4 \sqrt{21}$ f.t. from (ii)
B1 For stating correct direction
A1 4 For correct point seen in equation $\mathbf{r}=\mathbf{a}+t \mathbf{b}$ AEF in this form

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail:

$\begin{aligned} & 1 \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{t}=5 / 1.2 \\ & \mathrm{t}=4.17 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & 5=1.2 \mathrm{t} \text { or } 0=5-1.2 \mathrm{t} \\ & 41 / 6 \mathrm{~s}, 4.166 \text { or better, } 4.16 \text { recurring. } \end{aligned}$
ii	$\begin{aligned} & \mathrm{s}=(-5)^{2} / 2 \mathrm{x} 1.2 \\ & \mathrm{~s}=10.4 \mathrm{~m} \\ & \text { OR }(u \operatorname{sing}(i)) \\ & \mathrm{s}=5 \times 4.17-1.2 \times 4.17^{2} / 2 \\ & \mathrm{~s}=10.4 \mathrm{~m} \\ & \text { OR }(u \operatorname{sing}(i)) \\ & \mathrm{s}=(5(+0)) / 2 \times 4.17 \\ & \mathrm{~s}=10.4 \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\mathrm{s}=5^{2} / 2 \times 1.2 \text { or } 5^{2}=2 \times 1.2 \mathrm{~s} \text { or } 0=5^{2}-2 \times 1.2 \mathrm{~s}$ Accept $105 / 12$, but not 10 Time must be >0. Accept $\|t\|$ from (i) Award if $\|-4.17\|$ used.
iii	$\begin{aligned} & \mathrm{Fr}=3 \times 1.2 \\ & \mathrm{R}=3 \times 9.8 \\ & \mu=(3 \mathrm{x}) 1.2 /(3 \mathrm{x}) 9.8 \\ & \mu=0.122 \\ & O R \\ & \mathrm{R}=3 \times 9.8 \\ & \text { Mass x acceleration }=+/-3 \times 1.2 \\ & +/-\mu \times 29.4=+/-3 \times 1.2 \\ & \mu=0.122 \end{aligned}$	B1 B1 M1 A1 $[4]$ B1 B1 M1 A1	Accept 3.6, +/- Accept 3g, +/- Ratio of 2 positive numerical force terms Not 0.12 Accept 3g, +/- Either both positive or both negative.

2	$\begin{aligned} & \hline+/-(0.4 \times 3-0.6 \times 1.5) \\ & +/-(0.4 \times 0.1+0.6 \mathrm{v}) \\ & (0.4 \times 3-0.6 \times 1.5)=+/-(0.4 \times 0.1+0.6 \mathrm{v}) \\ & \text { speed }\|\mathrm{v}\|=0.433 \mathrm{~ms}^{-1} \\ & O R \\ & +/-(0.4 \times 3-0.4 \times 0.1)=+/-1.16 \\ & (0.6 \mathrm{v}+0.6 \times 1.5)=0.6 \mathrm{v}+0.9 \\ & 1.16=+/-(0.6 \mathrm{v}+0.9) \\ & \text { speed }\|\mathrm{v}\|=0.433 \mathrm{~ms}^{-1} \\ & \hline \end{aligned}$	B1 B1 M1 A1 $[4]$ B1 B1 M1 A1	$+/-0.3$ Nb the terms have same signs Equating their total mom before \& after Accept $13 / 30$ or 0.43 recurring, but not 0.43 Momentum change of P Momentum change of Q Equating momentum changes $0.26 / 0.6=v$
ii	$\begin{aligned} & +/-(0.4 \times 0.1-0.6 \mathrm{v}) \\ & (0.4 \times 3-0.6 \times 1.5)=+/-(0.6 \mathrm{v}-0.4 \mathrm{x} 0.1) \\ & \mathrm{v}=0.567 \\ & \mathrm{PQ}=0.1 \times 3+0.567 \times 3 \\ & \mathrm{PQ}=2 \mathrm{~m} \\ & O R \\ & +/-0.4 \times 3+0.4 \times 0.1 \text { and }+/-0.6 \mathrm{v}+0.6 \times 1.5 \\ & 1.24=+/-0.6 \mathrm{v}+0.9 \\ & \mathrm{v}=0.567 \end{aligned}$ etc	B1 M1 A1 M1 A1 [5] B1 M1 A1	Nb the terms have different signs Must use $+/$ - same before momentum as in (i) May be implied, or in any format $(0.1+0.567) \times 3$ Accept 2.00(1), 2.0, 2.00 Both must be correct Equating change in momentum May be implied, or in any format

$\begin{aligned} & 3 \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{H}=+/-(9-5 \cos 60) \\ & \mathrm{H}=6.5 \mathrm{~N} \end{aligned}$	AG	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$+/-(9+5 \cos 120)$
ii	$\begin{aligned} & \mathrm{V}=+/-(12-5 \sin 60) \\ & \mathrm{V}=7.67 \mathrm{~N} \end{aligned}$		$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$+/-(12+5 \cos 150)$ Accept 7.666 or better, or 7.6 recurring
iii	$\begin{aligned} & \hline \mathrm{R}^{2}=6.5^{2}+7.67^{2} \\ & \mathrm{R}=10.1 \mathrm{~N} \\ & \tan \mathrm{~A}=6.5 / 7.67 \text { or } 7.67 / 6.5 \\ & \mathrm{~A}=40(.3) \text { or } 49.7 \\ & \text { Bearing }=320^{\circ} \end{aligned}$		M1 A1 M1 A1 A1 [5]	Uses Pythagoras on forces V(ii) and 6.5 10.053.. Uses trigonometry in relevant triangle May be implied by final answer As this is not a final answer, exact accuracy is not an issue Or better

$\begin{aligned} & 4 \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & 3.2-0.2 \mathrm{t}^{2}=0 \\ & \mathrm{t}=4 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Puts 0 for v and attempts to solve QE Accept dual solution +/-4
ii	$\begin{aligned} & \mathrm{a}=-2 \mathrm{x} 0.2 \mathrm{t} \\ & \mathrm{a}=-0.4 \times 4 \\ & \mathrm{a}=-1.6 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { D*M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Differentiates v Substitutes + ve $t(i)$ in derivative of v Negative only
iii	$\begin{aligned} & \mathrm{s}=3.2 \mathrm{t}-0.2 \mathrm{t}^{3} / 3(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{~s}=0 \mathrm{soc}=0 \\ & \mathrm{~s}(4)=3.2 \mathrm{x} 4-0.2 \times 4^{3} / 3 \\ & \mathrm{~s}=8.53 \mathrm{~m} \end{aligned}$	M1* A1 B1 D*M1 A1 [5]	Integrates v , not multiplication by t Or correct use of limits 0 and 4 Accept without/loss of c 8 8/15 Accept with/without c

5	$\begin{aligned} & +/-3 \times 20 / 2 \\ & 30 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Use area of scalene triangle(s). Not suvat. Accept -30
ii	$\begin{aligned} & (\mathrm{t}+4) \times 3 / 2=30 \text { or } 3 \mathrm{t} / 2=30-4 \times 3 \\ & \mathrm{t}=16 \text { or } \mathrm{t}=12 \\ & \mathrm{~T}=76 \end{aligned}$	M1 A1 A1 A1 [4]	Equates scalene trapezium area to distance (i) $[(\mathrm{T}-60)+4] \times 3 / 2=30$, award A2
iii	$\begin{aligned} & \mathrm{T}(\mathrm{accn})=3 / 0.4 \quad(=7.5 \mathrm{~s}) \\ & \operatorname{decn}=3 /([76-60]-4-7.5) \\ & \operatorname{decn}=(+/-) 2 / 3 \mathrm{~ms}^{-2} \\ & O R \\ & \mathrm{~S}(\mathrm{accn})=3^{2} /(2 \times 0.4) \quad(=11.25 \mathrm{~m}) \\ & \operatorname{decn}=3^{2} /[2 \times(30-3 \times 4-11.25)] \\ & \operatorname{decn}=(+/-) 2 / 3 \mathrm{~ms}^{-2} \end{aligned}$	B1 M1 A1 [3] B1 M1 A1	Or $3=\operatorname{decn} x([76-60]-4-7.5)$ $(+/-) 0.667$ or better - accept 0.6 recurring (+/-) 0.667 or better - accept 0.6 recurring

7 i	$\begin{aligned} & \mathrm{Fr}=4+5 \sin 60 \\ & \mathrm{Fr}=8.33 \\ & \mathrm{R}=12-5 \cos 60 \\ & \mathrm{R}=9.5 \\ & \mu=(4+5 \sin 60) /(12-5 \cos 60) \\ & \mu=0.877 \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	All 4 + component 5 (4 + 4.333(01)) May be implied +/-(All 12 - component $5(12-2.5)$) May be implied, + ve from correct work Friction/Reaction, $\mathrm{Fr}>4, \mathrm{R}<12$, both positive
ii	$\begin{aligned} & \text { Upper block } \\ & \mu=5 \sin 60 /(9-5 \cos 60) \quad(=4.3 / 6.5) \\ & \mu=0.666 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \quad[2] \end{gathered}$	(Component 5)/(9-component 5)
iii	Upper mass $=9 / \mathrm{g}$ $(9 / \mathrm{g}) \mathrm{a}=5 \sin 60-0.1(9-5 \cos 60)$ $\mathrm{a}=4.01$ Lower mass Tractive force $=4+0.1(9-5 \cos 60)(=4.65)$ Max Friction $=0.877(3+(9-5 \cos 60)(=8.33)$ Tractive force $<$ Max Friction $\mathrm{a}=0$ OR for Lower Mass $\mathrm{ma}=4+0.1(9-5 \cos 60)-0.877(3+9-5 \cos 60)$ -ve a caused by friction impossible, hence $a=0$	B1 M1 A1 M1 A1 A1 [6] M1 A1 A1	0.918 (36..) N2L 0.918 (36..) $\mathrm{a}=4.33(01 .)-.0.1 \times 6.5$ where friction $=0.1 x(9$-component 5$)$ Compares TF (tractive force) and max friction N2L with 3 force terms:

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

$\mathbf{1}$	$v^{2}=2 \times 9.8 \times 10$	M1	Using $v^{2}=u^{2}+2$ as with $u=0$
	$v=14 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	speed $=\sqrt{ }\left(7^{2}+14^{2}\right)$	M1	Method to find speed using their " v "
	15.7 or $7 \sqrt{ } 5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	$\tan ^{-1}(14 / 7)$ or $\tan ^{-1}(7 / 14)$	M1	Method to find angle using their " v "
	$63.4^{\circ} \quad$ to the horizontal	A1 6	26.6° to vertical
			$\mathbf{6}$

2 (i)	$\begin{aligned} & (6 \sin \Pi / 2) \div(\Pi / 2) \\ & 3.82 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \end{array}$	Use of correct formula AG
(ii)	$\begin{aligned} & 8 \mathrm{~d}=3(6-3.82)+5 \mathrm{x} 9.82 \\ & \text { or } 8 \mathrm{x}= \pm\{3(-3.82)+5 \times 3.82\} \\ & \mathrm{d}=6.95 \text { or } 6.96 \text { or } \mathrm{x}=+/-0.955 \\ & \tan \theta=0.96 / 6 \\ & \theta=9^{\circ} \end{aligned}$	M1 A1 A1 M1 A1 5	Method to find centre of mass Attempt to find the required angle 7

3 (i)	$\begin{aligned} & \mathrm{D}=128000 / 80(=1600) \\ & \mathrm{k}(80)^{2}=128000 / 80 \\ & \mathrm{k}=1 / 4 \\ & \mathrm{R}=900 \mathrm{~N} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } \\ \text { A1 } & \\ \text { B1 } & 5 \end{array}$	Driving force $=$ resistance FT on their $\mathrm{k}(\mathrm{R}=3600 \mathrm{k})$
(ii)	$\begin{aligned} & \mathrm{D}=128000 / 60(=21331 / 3) \\ & 2000 \times 9.8 \times \sin 2^{\circ} \\ & 6400 / 3-900-2000 \times 9.8 \times \sin 2^{\circ}=2000 \mathrm{a} \\ & \mathrm{a}=0.275 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	B1 B1 M1 A1 4	4 terms required 9

4 (i)	$\begin{aligned} & 4 \mathrm{~T} \cos 20^{\circ}=5 \times \mathrm{g} \times 2.5 \\ & \mathrm{~T}=32.6 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } & \end{array}$	Using moments; allow sin/cos mix Allow with omission of g
(ii)	$\begin{aligned} & \mathrm{X}=\mathrm{T} \sin 20^{\circ} \\ & \mathrm{X}=11.1 \\ & \mathrm{Y}+\mathrm{T} \cos 20^{\circ}=5 \times \mathrm{g} \\ & \text { or } 2.5 \mathrm{Y}=1.5 \times \mathrm{T} \cos 20 \text { or } 4 \mathrm{Y}=1.5 \times 5 \mathrm{~g} \\ & \mathrm{Y}=18.4 \\ & \mathrm{FT} \\ & \mathrm{R}=\sqrt{ }\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right) \text { or } \tan ^{-1}(\mathrm{Y} / \mathrm{X}) \\ & \text { or } \tan ^{-1}(\mathrm{X} / \mathrm{Y}) \\ & \mathrm{R}=21.5 \mathrm{~N} \\ & \theta=58.8^{\circ} \text { above the horizontal } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	allow \sin / \cos mix FT their T FT their T, but not from omission of g $X \neq 0, Y \neq 0$ or 31.2° to left of vertical

5 (i)	$\begin{aligned} & \mathrm{T} \cos 45^{\circ}+\mathrm{R} \sin 45^{\circ}=\mathrm{mg} \\ & \mathrm{~T} \sin 45^{\circ}-\mathrm{R} \cos 45^{\circ}=\mathrm{ml} \sin 45^{\circ} \omega^{2} \\ & 2 \mathrm{~T}=\sqrt{ } 2 \mathrm{mg}+\mathrm{ml} \omega^{2} \\ & \mathrm{~T}=\mathrm{m} / 2\left(\sqrt{ } 2 \mathrm{~g}+1 \omega^{2}\right) \end{aligned}$	*M1 A1 *M1 A1 Dep*M1 A1 6	3 terms 3 terms; $a=r \omega^{2}$ Method to eliminate R AG www
(ii)	$\begin{aligned} & \mathrm{R}=0 \\ & 2 \mathrm{R}=\sqrt{ } 2 \mathrm{mg}-\mathrm{ml} \omega^{2} \\ & \text { or } \mathrm{T} \cos 45^{\circ}=\mathrm{mg} \\ & \text { or } \mathrm{T}=\mathrm{m} 1 \omega^{2} \\ & \text { Solve to find } \omega \\ & \\ & \omega=4.16 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 4	may be implied

6 (i)	$\begin{aligned} & 2 m u=2 m v+3 m v \\ & v=2 / 5 u \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } & \\ \hline \end{array}$	Conservation of momentum Must be $v=$
(ii)	$\begin{aligned} & \mathrm{e}=(3 v-v) / u \\ & \mathrm{e}=4 / 5 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Using restitution AG
(iii)	$\begin{aligned} & \text { Initial K.E. }=9 m v^{2} / 2=18 m u^{2} / 25 \\ & \text { Final K.E. }=9 m v^{2} / 8=9 m u^{2} / 50 \\ & 1 / 2 m(V)^{2}=\text { Final K.E. } \\ & V=3 u / 5 \end{aligned}$	$\begin{array}{\|l} \text { B1 FT } \\ \text { B1 FT } \\ \text { M1 } \\ \text { A1 } 4 \end{array}$	FT on their v from (i) FT on their v from (i) AG
(iv)	$\begin{aligned} & 4 m u / 5-3 m u / 5=2 m x+m y \\ & u / 5=2 x+y \\ & \mathrm{e}=4 / 5=(y-x) / u \\ & 4 u=5 y-5 x \end{aligned}$ solving 2 relevant equations $\begin{aligned} & x=-u / 5 y=3 u / 5 \\ & y=3 u / 5 \end{aligned}$ away from wall $(x)+$ towards wall (y)	M1 A1 FT M1 FT A1 M1 A1 A1 A1 8	Conservation of momentum FT on their v from (i); aef Using restitution FT on their v from (i); aef

7 (i) Or last 4 marks of (i)	$\begin{aligned} & \mathrm{R}=0.2 \times 9.8 \times \cos 30^{\circ}(=1.70) \\ & \mathrm{F}=0.1 \times 9.8 \times \cos 30^{\circ}(=0.849) \\ & 1 / 2 \times 0.2 \times 11^{2}-1 / 2 \times 0.2 \mathrm{v}^{2}= \\ & 0.2 \times 9.8 \times 55 \sin 30+5 \times 0.849 \\ & \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \\ & \mathrm{~F}+0.2 \mathrm{~g} \sin 30= \pm 0.2 \mathrm{a} \\ & \mathrm{a}= \pm 9.1 \\ & \mathrm{v}^{2}=11^{2}+2 \times \mathrm{a} \times 5 \\ & \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 A1 A1 6 M1 A1 M1 A1	FT on their R, but not $R=0.2 \mathrm{~g}$ Use of conservation of energy AG Use of N2L, 3 terms Complete method to find v
(ii) Or first 5 marks of (ii)	$\begin{aligned} & \mathrm{t}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{t}=0.919 \mathrm{~s} \\ & \mathrm{u}=5.44 \sin 30^{\circ}(=2.72) \\ & \mathrm{s}=2.72 \times 0.919-4.9 \times 0.919^{2} \\ & \mathrm{~s}=-1.6 \text { (or better) } \end{aligned}$ Ht drop to $C=5 \sin 30^{\circ}=2.5 \mathrm{~m}$ Ball does not hit the roof $y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 V^{2}$ substitute values $\begin{aligned} & V=5.44 \quad \theta=30^{\circ} \quad x=5 \cos 30^{\circ} \\ & y=2.5-9.8 \times 25 \times 3 / 4 \times 4 / 3 /\left(2 \times 5.44^{2}\right) \\ & y=-1.6 \text { (or better) } \end{aligned}$	M1 A1 B1 M1 A1 B1 A1 7 B1 M1 A1 A1 A1	time to lateral position over C Ht dropped all 3 correct
OR (ii)	$\begin{aligned} & u=5.44 \sin 30^{\circ}(=2.72) \\ & -2.5=5.44 \sin 30 t-4.9 t^{2} \\ & t=1.04 \\ & x=5.44 \cos 30 \times 1.04=4.9(\text { or better }) \end{aligned}$ Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 A1 A1 B1 A1 7	aef time to position level with $A C$
OR (ii)	$y=x \tan \theta-\mathrm{gx}^{2} \sec ^{2} \theta / 2 V^{2}$ substitute values $-2.5=0.577 \mathrm{x}-0.221 \mathrm{x}^{2}$ Attempt to solve quadratic for x $\mathrm{x}=4.9$ (or better) Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 M1 A1 B1 A1 7	aef
OR (ii)	$\begin{aligned} & \mathrm{u}=5.44 \sin 30^{\circ}=2.72 \\ & -2.5=5.44 \sin 30 \mathrm{t}-4.9 \mathrm{t}^{2} \\ & \mathrm{t}=1.0(\text { or better }) \\ & \mathrm{T}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{T}=0.92(\text { or better }) \\ & \text { Ball does not hit the roof } \end{aligned}$	B1 M1 A1 A1 M1 A1 A1 7	aef time to position level with $A C$ time to lateral position over C

OR (ii)	Attempt at equation of trajectory $\begin{aligned} & y=0.577 x-0.221 x^{2} \\ & y=-0.577 x \end{aligned}$ Solving their quadratic and linear equations to get at least x or y $\mathrm{x}=5.2$ (or better) or $\mathrm{y}=-3.0$ (or better) Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Or Ht drop to $C=5 \sin 30^{\circ}=2.5$ Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	Equation of BC Must be the one needed for comparison
OR (ii)	Attempt at equation of trajectory $\begin{aligned} & y=0.577 x-0.221 x^{2} \\ & y=-0.577 x \end{aligned}$ Solving their quadratic and linear equations $\mathrm{x}=5.2$ (or better) and $\mathrm{y}=-3.0$ (or better) Distance $=6.0$ (or better) Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	Distance from B to point of intersection

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	For included angle marked α or for $0.8(10.5-8.5 \cos \alpha)=4 \cos \beta$ For opposite side marked $4 / 0.8$ (or 4) or for -- $0.8 \times 8.5 \sin \alpha=4 \sin \beta$ $\begin{aligned} & 8.4^{2}+6.8^{2}-2 \times 8.4 \times 6.8 \cos \alpha=4^{2} \\ & \alpha=28.1^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { A1ft } \\ & \text { A1 } \\ & {[6]} \\ & \hline \end{aligned}$	For triangle with two of its sides marked 0.8×10.5 and 0.8×8.5 (or 10.5 and 8.5) or for using $\mathrm{I}=\Delta \mathrm{mv}$ in one direction. Allow B1 for omission of 0.8 Allow B1 for omission of 0.8 For using the cosine rule or for eliminating β ft 0.8 mis-used or not used
2(i)	$\left[100 \mathrm{a}=2 \mathrm{aV}_{\mathrm{B}}\right]$ Vertical component at B is 50 N Vertical component at C is 150 N	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	For taking moments about A for AB
(ii)	$\begin{aligned} & 100(0.5 a)+(\sqrt{3} a) F=150 a \text { or } \\ & 100 a+100(1.5 a)=150 a+(\sqrt{3} a) F \end{aligned}$ Frictional force is 57.7 N Direction is to the right	M1 A1ft A1 B1 [4]	For taking moments about B for BC (3 terms needed) or about A for the whole (4 terms needed)
3(i)	$\begin{aligned} & \mathrm{u}=4 \\ & \mathrm{v}=2 \end{aligned}$	B1 [2]	
(ii)	$\begin{aligned} & \mathrm{mu}=\mathrm{ma}+\mathrm{mb}(\text { or } \mathrm{u}=\mathrm{b}-\mathrm{a}) \\ & \mathrm{u}=\mathrm{b}-\mathrm{a}(\text { or } \mathrm{mu}=\mathrm{ma}+\mathrm{mb}) \\ & \mathrm{a}=0 \text { and } \mathrm{b}=4 \mathrm{~ms}^{-1} \end{aligned}$ Speed of A is $2 \mathrm{~ms}^{-1}$ and direction at 90° to the wall Speed of B is $4 \mathrm{~ms}^{-1}$ and direction parallel to the wall	M1 A1 B1 Alft Alft A1ft [6]	For using the principle of conservation of momentum or for using NEL with $\mathrm{e}=1$ ft incorrect u ft incorrect v ft incorrect u
4(i)	$\begin{aligned} & {\left[0.25 \mathrm{dv} / \mathrm{dt}=3 / 50-\mathrm{t}^{2} / 2400\right]} \\ & \\ & \mathrm{v}=12 \mathrm{t} / 50-\mathrm{t}^{3} / 1800 \\ & {[\mathrm{v}(12)=1.92]} \\ & {\left[0.25 \mathrm{dv} / \mathrm{dt}=\mathrm{t}^{2} / 2400-3 / 50 \rightarrow\right.} \\ & \left.\mathrm{v}=\mathrm{t}^{3} / 1800-12 \mathrm{t} / 50+\mathrm{C}_{2}\right] \\ & {\left[1.92=0.96-2.88+\mathrm{C}_{2}\right]} \\ & \mathrm{v}=\mathrm{t}^{3} / 1800-12 \mathrm{t} / 50+3.84 \\ & \mathrm{v}(24)=5.76=3 \times \mathrm{v}(12) \end{aligned}$	M1 M1 A1 M1 M1 M1 A1 A1 [8]	For using Newton's second law ($1^{\text {st }}$ or $2^{\text {nd }}$ stage) For attempting to integrate ($1^{\text {st }}$ stage) and using $\mathrm{v}(0)=0$ (may be implied by the absence of $+\mathrm{C}_{1}$) For evaluating v when force is zero For using Newton's second law (${ }^{\text {nd }}$ stage) and integrating For using $\mathrm{v}(12)=1.92$ AG

(ii)	Sketch has $\mathrm{v}(0)=0$ and slope decreasing (convex upwards) for $0<\mathrm{t}<12$ Sketch has slope increasing (concave upwards) for $12<\mathrm{t}<24$ Sketch has $v(t)$ continuous, single valued and increasing (except possibly at $\mathrm{t}=12$) with $\mathrm{v}(24)$ seen to be $>2 \mathrm{v}(12)$	B1 B1 B1 [3]	
5(i)	For using amplitude as a coefficient of a relevant trigonometric function. For using the value of ω as a coefficient of t in a relevant trigonometric function. $\mathrm{x}_{1}=3 \operatorname{cost}$ and $\mathrm{x}_{2}=4 \cos 1.5 \mathrm{t}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \\ & \hline \end{aligned}$	
(ii)	Part distance is 20 m $[20-(-3.62)]$ Distance travelled by P_{2} is 23.6 m	M1 A1 M1 A1 [4]	For using distance travelled by P_{2} for $0<\mathrm{t}<5 \pi / 3$ is $5 \mathrm{~A}_{2}$ For subtracting displacement of P_{2} when $\mathrm{t}=5.99$ from part distance.
(iii)	$\dot{x}_{1}=-3 \sin t ; \dot{x}_{2}=-6 \sin 1.5 \mathrm{t}$ $\mathrm{v}_{1}=0.867, \mathrm{v}_{2}=-2.55$; opposite directions	M1 A1 M1 A1 [4]	For differentiating x_{1} and x_{2} For evaluating when $\mathrm{t}=5.99$ (must use radians)
	Alternative for (iii): $\begin{aligned} & \mathrm{v}_{1}^{2}=3^{2}-2.87^{2}, \mathrm{v}_{2}^{2}=2.25\left[4^{2}-(-3.62)^{2}\right] \\ & {\left[\pi<5.99<2 \pi \rightarrow \mathrm{v}_{1}>0,\right.} \\ & \left.4 \pi / 3<5.99<2 \pi \rightarrow \mathrm{v}_{2}<0\right] \\ & \mathrm{v}_{1}=0.867, \mathrm{v}_{2}=-2.55 ; \text { opposite directions } \end{aligned}$	M1 A1 M1 A1	For using $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$ (must use radians to find values of x) For using the idea that v starts -ve and changes sign at intervals of $\mathrm{T} / 2 \mathrm{~s}$
6(i)	$\begin{aligned} & \text { PE loss at lowest allowable point }=25 \mathrm{~W} \\ & \text { EE gain }=32000 \times 5^{2} /(2 \times 20) \\ & {[25 \mathrm{~W}=20000]} \\ & \text { Value of } \mathrm{W} \text { is } 800 \end{aligned}$	B1 M1 A1 M1 A1 [5]	For using $\mathrm{EE}=\lambda \mathrm{x}^{2} /(2 \mathrm{~L})$; may be scored in (i) or in (ii) For equating PE loss and EE gain and attempting to solve for W
(ii)	$\begin{aligned} & {[800=32000 \times / 20]} \\ & \begin{array}{r} 1 / 2(800 / 9.8) \mathrm{v}^{2} \\ = \\ \quad 800 \times 20.5-32000 \times 0.5^{2} /(2 \times 20) \end{array} \end{aligned}$ $\text { Maximum speed is } 19.9 \mathrm{~ms}^{-1}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	For using $\mathrm{W}=\lambda x / L$ at max speed For using the principle of conservation of energy (3 terms required)
(iii)	$(800) \ddot{\chi} / \mathrm{g}=800-32000 \times 5 / 20$ Max. deceleration is $88.2 \mathrm{~ms}^{-2}$	M1 A1 A1 [3]	For applying Newton's second law to jumper at lowest point (3 terms needed)

7(i)	$\left[1 / 2 \mathrm{mv}^{2}-1 / 2 \mathrm{~m} 6^{2}=\mathrm{mg}(0.7)\right]$ Speed of P before collision is $7.05 \mathrm{~ms}^{-1}$ Coefficient of restitution is 0.695	M1 A1 B1ft [3]	For using the principle of conservation of energy for P (3 terms needed) ft $4.9 \div$ speed of P before collision
(ii)	$\begin{aligned} & {\left[1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{~m} 4.9^{2}-\mathrm{mg} 0.7(1-\cos \theta)\right]} \\ & \mathrm{v}^{2}=3.43(3+4 \cos \theta) \\ & \mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / 0.7 \\ & {[\mathrm{~T}-\mathrm{m} 9.8 \cos \theta=\mathrm{m} 3.43(3+4 \cos \theta) / 0.7]} \\ & \text { Tension is } 14.7 \mathrm{~m}(1+2 \cos \theta) \mathrm{N} \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	For using the principle of conservation of energy for Q Accept any correct form For using Newton's second law radially with $a_{r}=v^{2} / r$ For substituting for v^{2} AG
(iii)	$\mathrm{T}=0 \rightarrow \theta=120^{\circ}$ Radial acceleration is $(\pm) 4.9 \mathrm{~ms}^{-1}$ or transverse acceleration is $(\pm) 8.49 \mathrm{~ms}^{-1}$ Radial acceleration is $(\pm) 4.9 \mathrm{~ms}^{-1}$ and transverse acceleration is $(\pm) 8.49 \mathrm{~ms}^{-1}$	B1 M1 A1 B1 [4]	For using $\mathrm{a}_{\mathrm{r}}=-\mathrm{g} \cos \theta$ $\{\text { or } 3.43(3+4 \cos \theta) / 0.7\}$ or $a_{t}=-g \sin \theta$
			SR for candidates with a $\sin /$ cos mix in the work for M1 A1 B1 immediately above. (max. 1/3) Radial acceleration is $(\pm) 8.49 \mathrm{~ms}^{-1}$ and transverse acceleration is $(\pm) 4.9 \mathrm{~ms}^{-1}$ B1
(iv)	$\begin{aligned} & {\left[\mathrm{V}^{2}=3.43\{3+4(-0.5)\} \times 0.5^{2}\right. \text { or }} \\ & \left.\mathrm{V}^{2}=\left(-\mathrm{gcos} 120^{\circ} \times 0.7\right) \times \cos ^{2} 60^{\circ}\right] \\ & \mathrm{V}^{2}=0.8575 \\ & {\left[\mathrm{mgH}=1 / 2 \mathrm{~m}\left(4.9^{2}-0.8575\right)\right. \text { or }} \\ & \quad \mathrm{mg}(\mathrm{H}-1.05)=1 / 2 \mathrm{~m}(3.43- \\ & 0.8575)] \quad \\ & \text { Greatest height is } 1.18 \mathrm{~m} \\ & \hline \end{aligned}$	M1 A1 M1 A1 [4]	For using $\mathrm{V}=\mathrm{v}\left(120^{\circ}\right) \mathrm{x} \cos 60^{\circ}$ AG For using the principle of conservation of energy

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU
 OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

$\begin{array}{\|l\|} \hline 1 \\ \text { (i) } \end{array}$	Using $\theta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$, $1020=80 \times 15+\frac{1}{2} \alpha \times 15^{2}$ $\alpha=-1.6$ Angular deceleration is $1.6 \mathrm{rads}^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ [2]	
(ii)	Using $\theta=\omega_{2} t-\frac{1}{2} \alpha t^{2}$, $\theta=0-\frac{1}{2} \times(-1.6) \times 5^{2}$ Angle is 20 rad	M1 A1 ft [2]	ft is $12.5\|\alpha\|$
(iii)	Using $\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta$, $\begin{aligned} & 0=80^{2}+2 \times(-1.6) \theta \\ & \theta=2000 \end{aligned}$ Number of revolutions is 318 (3 sf)	M1 A1 ft A1 [3]	$\text { Accept } \frac{1000}{\pi}$
2	$\begin{aligned} & \text { Area is } \int_{0}^{\ln 3} \mathrm{e}^{-x} \mathrm{~d} x \\ & \quad=\left[-\mathrm{e}^{-x}\right]_{0}^{\ln 3}\left(=\frac{2}{3}\right) \\ & \begin{aligned} \int x y \mathrm{~d} x & =\int_{0}^{\ln 3} x \mathrm{e}^{-x} \mathrm{~d} x \end{aligned} \\ & \quad=\left[-x \mathrm{e}^{-x}-\mathrm{e}^{-x}\right]_{0}^{\ln 3}\left(=\frac{2}{3}-\frac{1}{3} \ln 3\right) \\ & \begin{aligned} \bar{x} & =\frac{\frac{2}{3}-\frac{1}{3} \ln 3}{\frac{2}{3}}=1-\frac{1}{2} \ln 3 \end{aligned} \\ & \begin{array}{l} \begin{array}{l} \frac{1}{2} y^{2} \mathrm{~d} x \end{array} \\ =\int_{0}^{\ln 3} \frac{1}{2}\left(\mathrm{e}^{-x}\right)^{2} \mathrm{~d} x \end{array} \\ & \quad=\left[-\frac{1}{4} \mathrm{e}^{-2 x}\right]_{0}^{\ln 3} \quad\left(=\frac{2}{9}\right) \\ & \bar{y}=\frac{\frac{2}{9}}{\frac{2}{3}}=\frac{1}{3} \end{aligned}$	M1 M1 A1 A1 M1 A1 A1 [9]	Limits not required For $-e^{-x}$ Limits not required Integration by parts For $-x \mathrm{e}^{-x}-\mathrm{e}^{-x}$ $\int\left(\mathrm{e}^{-x}\right)^{2} \mathrm{~d} x$ or $\int(-\ln y) y \mathrm{~d} y+\left(\frac{1}{3} \ln 3\right) \times \frac{1}{6}$ $-\frac{1}{4} \mathrm{e}^{-2 x}$ or $-\frac{1}{2} y^{2} \ln y+\frac{1}{4} y^{2}$ (dep on M1) Max penalty of 1 mark for correct answers in an unacceptable form (eg decimals)
$\begin{aligned} & \hline 3 \\ & (\mathrm{i}) \end{aligned}$	By conservation of angular momentum $\begin{aligned} I_{2} \times 15 & =0.9 \times 16 \\ I_{2} & =0.96 \\ I_{2}=0.9+m \times 0.4^{2} & \end{aligned}$ Mass is 0.375 kg	M1 A1 M1 A1 [4]	Using I ω
(ii)	KE before is $\frac{1}{2} \times 0.9 \times 16^{2}$ KE after is $\frac{1}{2} \times 0.96 \times 15^{2}$ Loss of KE is $115.2-108=7.2 \mathrm{~J}$	M1 A1 ft A1 [3]	$\text { Using } \frac{1}{2} I \omega^{2}$ Both expressions correct

4 (i)	Bearing of \mathbf{v}_{B} is $110-36.87=073.13$ $=073^{\circ}$ (nearest degree)	M1 A1 M1 A1 ag [4]	Velocity triangle with 90° opposite \mathbf{v}_{C} Correct velocity triangle Finding a relevant angle
(ii)	Magnitude is $\sqrt{15^{2}-12^{2}}=9 \mathrm{~ms}^{-1}$ Direction is 90° from \mathbf{v}_{B} Bearing is $73.13+90=163^{\circ} \quad$ (nearest degree)	B1 M1 A1 [3]	Accept 8.95 to 9.05
	Alternative for (ii) (using given answer in (i)) $\begin{aligned} v^{2} & =12^{2}+15^{2}-2 \times 12 \times 15 \cos 37^{\circ} \\ v & =9 \\ \frac{\sin \beta}{12} & =\frac{\sin 37^{\circ}}{v} \\ \beta & =53^{\circ} \end{aligned}$ Bearing is $110+53=163^{\circ}$	B1 M1 A1	or Relative velocity is $\binom{v \sin \theta}{v \cos \theta}=\binom{15 \sin 110}{15 \cos 110}-\binom{12 \sin 73}{12 \cos 73} \approx\binom{2.6}{-8.6}$ or $v^{2}=(2.6 \ldots)^{2}+(-8.6 \ldots)^{2}$ Accept 8.95 to 9.05 Finding a relevant angle or $\tan \theta=\frac{2.6 \ldots}{-8.6 \ldots}$
(iii)	As viewed from B $d=3500 \sin 56.87^{\circ}$ Shortest distance is 2930 m (3 sf)	M1 M1 A1 [3]	Diagram indicating initial displacement and relative velocity May be implied Accept 2910 to 2950
	Alternative for (iii) $\begin{aligned} & \begin{array}{l} d^{2}=\left(3500 \sin 40^{\circ}+2.6 \ldots t\right)^{2} \\ \\ \quad+\left(3500 \cos 40^{\circ}-8.6 \ldots t\right)^{2} \\ \text { Minimum when }-34432+162 t=0 \\ t \end{array}=213 \end{aligned}$ Shortest distance is 2930 m (3 sf)	M1 M1 A1	Differentiating or completing the square Accept 2910 to 2950

$\begin{aligned} & 5 \\ & \text { (i) } \end{aligned}$	$\begin{aligned} I & =\int_{-a}^{5 a} \frac{m}{6 a} x^{2} \mathrm{~d} x \text { or } \int_{-a}^{5 a} \rho x^{2} \mathrm{~d} x \\ & =\left[\frac{m}{18 a} x^{3}\right]_{-a}^{5 a}=\frac{m}{18 a}\left(125 a^{3}+a^{3}\right) \text { or } 42 \rho a^{3} \\ & =\frac{126 m a^{3}}{18 a}=7 m a^{2} \end{aligned}$	M1 M1 A1 M1 A1 ag [5]	$(\delta m) x^{2}$ or $(\rho \delta x) x^{2}$ or integrating x^{2} Using $\delta m=\frac{m \delta x}{6 a}$ or $\rho=\frac{m}{6 a}$ Correct integral expression for I $\begin{aligned} & \text { eg } I=\int_{0}^{5 a} \cdots+\int_{0}^{a} \cdots \\ & \quad I=\int_{-3 a}^{3 a} \cdots+m(2 a)^{2}, \\ & I=2 \int_{0}^{3 a} \ldots+m(2 a)^{2} \\ & I=\int_{0}^{6 a} \ldots-m(3 a)^{2}+m(2 a)^{2} \end{aligned}$ Evaluating definite integral Dependent on integrating x^{2}
(ii)	WD by couple is $\frac{6 m g a}{\pi} \times 3 \pi \quad(=18 \mathrm{mga})$ Gain of PE is $m g(4 a)$ $18 m g a=4 m g a+\frac{1}{2}\left(7 m a^{2}\right) \omega^{2}$ Angular speed is $\sqrt{\frac{4 g}{a}}$	M1 A1 B1 M1 A1 ft A1 [6]	Using C θ Equation involving WD, PE and $\frac{1}{2} I \omega^{2}$

$\begin{aligned} & \hline 6 \\ & \text { (i) } \end{aligned}$	$\frac{\mathrm{d} V}{\mathrm{~d} \theta}=m g a(3 \cos \theta+4 \sin \theta-3)$ When $\theta=0, \frac{\mathrm{~d} V}{\mathrm{~d} \theta}=\operatorname{mga}(3+0-3)=0$ so $\theta=0$ is a position of equilibrium $\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=m g a(-3 \sin \theta+4 \cos \theta)$ When $\theta=0, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}=4 m g a>0$ hence the equilibrium is stable	B1 M1 A1 ag M1 A1 ag [5]	Considering $\frac{\mathrm{d} V}{\mathrm{~d} \theta}=0$ Correctly shown Considering $\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}$ (or other method) $V^{\prime \prime}=4 m g a \Rightarrow$ Stable M1AO $V^{\prime \prime}=4 m g a \Rightarrow$ Minimum \Rightarrow Stable M1A1
(ii)	Speed of P and Q is $a \dot{\theta}$ KE is $\frac{1}{2}(5 m)(a \dot{\theta})^{2}+\frac{1}{2}(3 m)(a \dot{\theta})^{2}$ or $\frac{1}{2}(8 m)(a \dot{\theta})^{2}$ $\begin{aligned} & =\frac{5}{2} m a^{2} \dot{\theta}^{2}+\frac{3}{2} m a^{2} \dot{\theta}^{2} \\ & =4 m a^{2} \dot{\theta}^{2} \end{aligned}$	M1 A1 ag [2]	Or moment of inertia of P is $5 \mathrm{ma}^{2}$ $\frac{5}{2} m a^{2} \dot{\theta}^{2}+\frac{3}{2} m a^{2} \dot{\theta}^{2} \quad$ M1A1 $\frac{1}{2}\left(5 m a^{2}\right) \dot{\theta}^{2}+\frac{1}{2}\left(3 m a^{2}\right) \dot{\theta}^{2} \quad$ M1A0 $\frac{1}{2}\left(8 m a^{2}\right) \dot{\theta}^{2} \quad$ M1AO
(iii)	$\begin{aligned} & \qquad \begin{array}{r} V+4 m a^{2} \dot{\theta}^{2}=K \\ \frac{\mathrm{~d} V}{\mathrm{~d} \theta} \dot{\theta}+8 m a^{2} \dot{\theta} \ddot{\theta}=0 \\ m g a(3 \cos \theta+4 \sin \theta-3) \dot{\theta}+8 m a^{2} \dot{\theta} \ddot{\theta}=0 \\ \text { For small } \theta, \sin \theta \approx \theta, \cos \theta \approx 1 \\ m g a(3+4 \theta-3)+8 m a^{2} \ddot{\theta} \approx 0 \\ \qquad \ddot{\theta} \approx-\frac{g}{2 a} \theta \\ \text { Approximate period is } 2 \pi \sqrt{\frac{2 a}{g}} \end{array} \text { } \end{aligned}$	M1 A1 M1 A1 ft A1 [5]	$=0$ is required for A1 (may be implied by later work) Linear approximation (ft is dep on M1M1)

(i)	$\begin{aligned} I & =\frac{1}{3} m\left\{(3 a)^{2}+(4 a)^{2}\right\}+m(5 a)^{2} \\ & =\frac{100 m a^{2}}{3} \end{aligned}$	M1 A1 A1 [3]	Using parallel (or perpendicular) axes rule or $I=\frac{4}{3} m(3 a)^{2}+\frac{4}{3} m(4 a)^{2}$
(ii)	By conservation of energy, $\begin{aligned} \frac{1}{2}\left(\frac{100}{3} m a^{2}\right) \omega^{2} & =m g(4 a-3 a) \\ \frac{50}{3} m a^{2} \omega^{2} & =m g a \end{aligned}$ Angular speed is $\sqrt{\frac{3 g}{50 a}}$ $-m g(3 a)=\left(\frac{100}{3} m a^{2}\right) \alpha$ Angular acceleration is $(-) \frac{9 g}{100 a}$	M1 A1 ft A1 ag M1 A1 [5]	Equation involving KE and PE Using $C=I \alpha$
(iii	$\begin{aligned} & P-m g \cos \theta=m(5 a) \omega^{2} \\ & P-\frac{4}{5} m g=m(5 a)\left(\frac{3 g}{50 a}\right) \\ & P=\frac{11}{10} m g \\ & Q-m g \sin \theta=m(5 a) \alpha \\ & Q-\frac{3}{5} m g=-m(5 a)\left(\frac{9 g}{100 a}\right) \\ & Q=\frac{3}{20} m g \\ & F=\sqrt{P^{2}+Q^{2}}=\frac{1}{20} m g \sqrt{22^{2}+3^{2}} \\ &=\frac{\sqrt{493}}{20} m g \end{aligned}$	M1 A2 M1 A2 ft M1 A1 ag [8]	Equation involving P and $r \omega^{2}$ Give A1 if correct apart from sign(s) (Allow $\frac{3}{5} H+\frac{4}{5} V$ in place of P) Equation involving Q and $r \alpha$ Give A1 if correct apart from sign(s) ft for wrong value of α $f t$ for wrong value of r in second equation (Allow $\frac{3}{5} V-\frac{4}{5} \mathrm{H}$ in place of Q) Dependent on previous M1M1
	Alternative for (iii) $\begin{aligned} & H=m(5 a) \omega^{2} \sin \theta-m(5 a) \alpha \cos \theta \\ & H=m(5 a)\left(\frac{3 g}{50 a}\right)\left(\frac{3}{5}\right)+m(5 a)\left(\frac{9 g}{100 a}\right)\left(\frac{4}{5}\right) \\ & V-m g=m(5 a) \omega^{2} \cos \theta+m(5 a) \alpha \sin \theta \\ & V-m g=m(5 a)\left(\frac{3 g}{50 a}\right)\left(\frac{4}{5}\right)-m(5 a)\left(\frac{9 g}{100 a}\right)\left(\frac{3}{5}\right) \\ & H=\frac{27}{50} m g, \quad V=\frac{97}{100} m g \end{aligned}$	M1 A2 ft M1 A2 ft	Equation involving $H, r \omega^{2}$ and $r \alpha$ Give A1 if correct apart from sign(s) Equation involving $V, r \omega^{2}$ and $r \alpha$ Give A1 if correct apart from sign(s)

$\left[\begin{array}{l|l|l|l|}F & =\sqrt{H^{2}+V^{2}}=\frac{1}{100} m g \sqrt{54^{2}+97^{2}} \\ =\frac{\sqrt{12325}}{100} m g=\frac{\sqrt{493}}{20} m g & \text { M1 } & \text { Dependent on previous M1M1 } \\ \text { ag }\end{array}\right]$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT

GCE

Mathematics

Advanced GCE 4732
Probability and Statistics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise over-rounding only once in paper.

1 i	590	B1 1	Allow approximately 590
ii	Graph horiz (for $\geq 55 \mathrm{mks}$) oe	B1 1	or levels off, or grad $=0$, grad not increase Allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27 Double \& attempt read x $\operatorname{Max} \mathrm{C}=29$ to 31.5	M1 M1 A1 3	eg $26 \mathrm{mks} \rightarrow 150^{\mathrm{Th}} 27 \mathrm{mks} \rightarrow 180^{\text {th }}$ eg read at cf = 300 or 360 Indep of first M1 May be implied by ans Answer within range, no working, M1M1A1 32 without working, sc B1
v	$\begin{aligned} & \mathrm{LQ}=25.5-26.5 \text { or } \mathrm{UQ}=34-35.5 \\ & \mathrm{IQR}=8-10 \end{aligned}$ (German) more spread	M1 A1 B1ft 3	M1 for one correct quartile dep ≥ 1 correct quartile or no working or less consistent, less uniform, less similar, more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR Correct comment with no working: M0A0B1
Total		9	
2 i	Opposite orders or ranks or scores or results or marks $r_{s}=-1$	B1 1	or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND value
ii	$\begin{aligned} & \text { Attempt } \Sigma d^{2} \\ & 1-\frac{6 \times \Sigma d^{2}}{3\left(3^{2}-1\right)} \\ & =-\frac{1}{2} \text { oe } \end{aligned}$ $(=6)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	dep $1^{\text {st }}$ M1 Allow use wrong table for M1M1
iii	$\begin{aligned} & 3!\text { or }{ }^{3} \mathrm{P}_{3} \text { or } 6 \\ & 1 \div \text { their ' } 6 \text { ' } \\ & \frac{1}{6} \text { oe eg } \frac{6}{36} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	r attempt list possible orders of $1,2,3$ (≥ 3 orders) $2^{\text {nd }} \mathrm{M} 1$ for fully correct method only or $\frac{1}{3} \times \frac{1}{2}(\times 1):$ M1M1
Total		7	
3 i	If x is contr (or indep) or y depend't, use y on x If neither variable contr'd (or indep) AND want est y from x : use y on x	B1 B1 2	Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen Allow y not controlled AND want est y from x Ignore incorrect comments
iia	$\begin{array}{ll} S_{x x}=510000-\frac{1800^{2}}{9} & (=150000) \\ S_{x y}=4080-\frac{1800 \times 14.4}{9} & (=1200) \\ b=\frac{1200^{\prime}}{150000^{\prime}} & (=0.008) \\ y-\frac{14.4}{9}=0.008\left(x-\frac{1800}{9}\right) \\ y=0.008 x(+0) & \end{array}$	M1 M1 M1 A1 4	or $\frac{510000}{9}-200^{2} \quad(=16666.7)$ or $\frac{4080}{9}-200 \times 1.6(=133.33)$ M1 for either S $b=\frac{133.33^{\prime}}{16666.7^{\prime}} \quad$ dep correct expressions both S 's or $a=\frac{14.4}{9}-0.008 \times \frac{1800}{9} \quad(=0)$ Must be all correct for M1 CAO
iib	312.5 or 313	Bift 1	ft their equn in (iia)
ic	-0.4	B1ft	ft their equn in (iia)

6	$\begin{aligned} & m=(9 \times 6+3) \div 10 \\ & =5.7 \\ & 2=\frac{\Sigma x^{2}}{9}-6^{2} \\ & \Sigma x^{2}=2 \times 9+6^{2} \times 9 \text { or } 342 \\ & v=\frac{\left('^{\prime} 342^{\prime}+3^{2}\right)}{10}--^{2} .7^{\prime 2} \\ & =2.61 \text { oe } \end{aligned}$	M1 A1 M1 A1 M1 A1 6	or $(($ Sum of any 9 nos totalling 54$)+3) \div 10$ or $\frac{\Sigma(x-6)^{2}}{9}=2$ M1 or $\Sigma x^{2}=18+12 \times 54-36 \times 9$ or 342 A 1 dep Σx^{2} attempted, eg $(\Sigma x)^{2}(=3249)$ or just state ' Σx^{2} '; allow $\sqrt{ }$ CAO
Total		6	
7 i	$\begin{aligned} & { }^{4} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{4} \text { or } 6 \times 20 \times 5 \\ & =600 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \mathrm{M} 1 \\ & \mathrm{~A} 1 \quad 3 \end{aligned}$	M1 for any 2 correct combs seen, even if added
ii	$\begin{aligned} & \frac{2}{4} \text { or } \frac{{ }^{3} C_{1}}{{ }^{4} C_{2}} \text { or } \frac{{ }^{3} C_{1} \times{ }^{6} C_{3} \times{ }^{5} C_{4}}{{ }^{4} C_{2} \times{ }^{6} C_{3} \times{ }^{5} C_{4}} \text { or } \\ & \frac{{ }^{3} C_{1} \times{ }^{6} C_{3} \times{ }^{5} C_{4}}{' 600 '} \\ & =\frac{1}{2} \text { oe } \end{aligned}$	M1 $\text { A1 } 2$	or $\frac{1}{4} \times 1+\frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4}+\frac{1}{4}$
111	$\begin{aligned} & { }^{3} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{3}\left(\times{ }^{4} \mathrm{C}_{4}\right)+{ }^{3} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{4} \\ & 360 \end{aligned}$	M1M1 $\text { A1 } 3$	M1 either product seen, even if \times or \div by something
Total		8	

8			
8ia	$\begin{aligned} & \text { Geo(0.3) stated or implied } \\ & 0.7^{3} \times 0.3 \\ & =0.103(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 3	by $0.7^{n} \times 0.3$
b	$\begin{aligned} & 0.7^{3} \text { or } 0.343 \\ & 1-0.7^{3} \end{aligned}$	M1 M1	0.7^{3} must be alone, ie not $0.7^{3} \times 0.3$ or similar allow $1-0.7^{4}$ or 0.7599 or 0.76 for M1 only or $0.3+0.7 \times 0.3+0.7^{2} \times 0.3$: M1M1 1 term wrong or omitted or extra or $1-\left(0.3+0.7 \times 0.3+0.7^{2} \times 0.3\right)$ or $0.343: \quad$ M1
iia	State or imply one viewer in $1{ }^{\text {st }}$ four $\begin{aligned} & { }^{4} \mathrm{C}_{1} \times 0.7^{3} \times 0.3 \quad(=0.412) \\ & \times 0.3 \\ & =0.123(3 \mathrm{sf}) \end{aligned}$	M1 M1 M1 A1 4	or $\mathrm{B}(4,0.3)$ stated, or ${ }^{4} \mathrm{C}_{1}$ used, or YNNNY dep 1st M1
b	$\begin{aligned} & 0.7^{5}+{ }^{5} \mathrm{C}_{1} \times 0.7^{4} \times 0.0 \\ & =0.528(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	or $1-\left(0.3^{2}+2 \times 0.3^{2} \times 0.7+3 \times 0.3^{2} \times 0.7^{2}+4 \times 0.3^{2} \times 0.7\right)$ Not ISW, eg $1-0.528:$ M1 A0
Total		12	

Total 72 marks

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

GCE

Mathematics

Advanced GCE 4733/01
Probability and Statistics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

$\begin{array}{lc} 1 \quad \text { (i)(a) } \\ & \text { (b) } \end{array}$	$\begin{gathered} 1-\mathrm{P}(\leq 6)=1-0.8675 \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots+\cdots .1325 \end{gathered}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	$\begin{aligned} & 1-.9361 \text { or } 1-.8786 \text { or } 1-.8558: \text { M1. .9721: M0 } \\ & \text { Or } 0.132 \text { or } 0.133 \end{aligned}$
	$e^{-0.42} \frac{0.42^{2}}{2!}=\mathbf{0 . 4 2)}=05795$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$\mathrm{Po}(0.42)$ stated or implied Correct formula, any numerical λ Answer, art 0.058. Interpolation in tables: M1B2
(ii)	E.g. "Contagious so incidences do not occur independently", or "more cases in winter so not at constant average rate"	B2	Contextualised reason, referred to conditions: B2. No marks for mere learnt phrases or spurious reasons, e.g. not just "independently, singly and constant average rate". See notes.
2 (i)		$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ \hline \end{array}$	$\mathrm{B}(10,0.35)$ stated or implied Tables used, e.g. 0.5138 or 0.3373 , or formula ± 1 term Answer 0.2616 or better or 0.262 only
(ii)	Binomial requires being chosen independently, which this is not, but unimportant as population is large	B2	Focus on "Without replacement" negating independence condition. It doesn't negate "constant probability" condition but can allow B1 if "selected". See notes
3 (i)	$\begin{aligned} & \left(\frac{32-40}{\sigma}\right)=\Phi^{-1}(0.2)=-0.842 \\ & \sigma=9.5[06] \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Standardise and equate to Φ^{-1}, allow " $1-$ " errors, σ^{2}, cc 0.842 seen Answer, 9.5 or in range [9.50, 9.51], c.w.o.
(ii)		B1 M1 A1 M1 A1 A1 $\mathbf{6}$ 	B $(90,0.2)$ stated or implied N , their $n p$... \ldots variance their $n p q$, allow $\sqrt{ }$ errors Standardise with $n p$ and $n p q$, allow $\sqrt{ }$, cc errors, e.g. .396, .448, .458, .486, .472; $\quad \sqrt{n p q}$ and cc correct Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]
$\begin{array}{ll}4 & \\ \\ & \\ & (\alpha)\end{array}$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4, \\ & \mathrm{H}_{1}: p>0.4 \\ & R \sim \mathrm{~B}(16,0.4): \\ & \mathrm{P}(R \geq 11)=0.0191 \\ & \quad>0.01 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Fully correct, B2. Allow π. p omitted or μ used in both, or > wrong: B1 only. x or \bar{x} or 6.4 etc: B0 $\mathrm{B}(16,0.4)$ stated or implied, allow $\mathrm{N}(6.4,3.84)$ Allow for $\mathrm{P}(\leq 10)=0.9808$, and <0.99, or $z=2.092$ or $p=0.018$, but not $\mathrm{P}(\leq 11)=0.9951$ or $\mathrm{P}(=11)=0.0143$ Explicit comp with .01 , or $z<2.326$, not from ≤ 11 or $=11$
(β)	CR $R \geq 12$ and $11<12$ Probability 0.0049	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Must be clear that it's ≥ 12 and not ≤ 11 Needs to be seen, allow 0.9951 here, or $p=.0047$ from N
	Do not reject H_{0}. Insufficient evidence that proportion of commuters who travel by train has increased	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 FT } & 7 \end{array}$	Needs like-with-like, $\mathrm{P}(R \geq 11)$ or $\mathrm{CR} R \geq 12$ Conclusion correct on their p or CR , contextualised, not too assertive, e.g. "evidence that" needed. Normal, $z=2.34$, "reject" [no cc] can get 6/7
5 (i)	(a) $\quad 30+1.645 \times \frac{5}{\sqrt{10}}$ Therefore critical region is $\bar{t}>32.6$		$30+5 z / \sqrt{ } 10$, allow \pm but not just - , allow $\sqrt{ }$ errors $z=1.645$ seen, allow Critical value, art 32.6 " > c" or " \geq c", FT on c provided >30, can't be recovered. Withhold if not clear which is CR
	(b) $\begin{aligned} & \mathrm{P}(\bar{t}<32.6 \mid \mu=35) \\ & \frac{32.6-35}{5 / \sqrt{10}}[=-1.5178] \\ & \mathbf{0 . 0 6 4 5}\end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { dep*M1 } \\ & \text { A1 }{ }_{3} \end{aligned}$	Need their c, final answer <0.5 and $\mu=35$ at least, but allow answer >0.5 if consistent with their (i) Standardise their CV with 35 and $\sqrt{ } 10$ or 10 Answer in range [$0.064,0.065$], or 0.115 from 1.96 in (a)
(ii)	$\begin{aligned} & (32.6-\mu)=0 \\ & \mu=32.6 \\ & 20+0.6 m=32.6 \\ & m=\mathbf{2 1} \end{aligned}$		Standardise c with μ, equate to Φ^{-1}, can be implied by: $\mu=$ their c Equate and solve for m, allow from 30 or 35 Answer, a.r.t. 21, c.a.o. MR: 0.05: M1 A0 M1, 16.7 A1 FT Ignore variance throughout (ii)

6 (a)	$\begin{aligned} & \mathrm{N}(24,24) \\ & 1-\Phi\left(\frac{30.5-24}{\sqrt{24}}\right)=1-\Phi(1.327) \\ &=\mathbf{0 . 0 9 2 3} \end{aligned}$	B1 B1 M1 A1 A1 5	Normal, mean 24 stated or implied Variance or SD equal to mean Standardise 30 with λ and $\sqrt{ } \lambda$, allow cc or $\sqrt{ }$ errors, e.g. .131 or $.1103 ; 30.5$ and $\sqrt{ } \lambda$ correct Answer in range [0.092, 0.0925]
(b)(i)	p or np [= 196] is too large	B1 1	Correct reason, no wrong reason, don't worry about 5 or 15
(ii)	$\begin{aligned} & \text { Consider }(200-E) \\ & (200-E) \sim \operatorname{Po}(4) \\ & \mathrm{P}(\geq 6) \quad[=1-0.7851] \\ & \quad=\mathbf{0 . 2 1 4 9} \end{aligned}$	M1 M1 M1 A1 4	Consider complement $\operatorname{Po}(200 \times 0.02)$ Poisson tables used, correct tail, e.g. 0.3712 or 0.1107 Answer a.r.t. 0.215 only
$\begin{array}{rrr}7 & \\ \\ & \\ & (\alpha)\end{array}$	$\begin{aligned} & \mathrm{H}_{0}: \mu=56.8 \\ & \mathrm{H}_{1}: \mu \neq 56.8 \\ & \bar{x}=17085 / 300=56.95 \\ & \frac{300}{299}\left(\frac{973847}{300}-56.9^{2}\right) \\ & \quad=2.8637 \ldots \\ & z=\frac{56.95-56.8}{\sqrt{2.8637 / 300}}=1.535 \\ & 1.535<1.645 \text { or } 0.0624>0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	Both correct One error: B1, but not \bar{x}, etc 56.95 or 57.0 seen or implied Biased [2.8541] : M1M0A0 Unbiased estimate method, allow if $\div 299$ seen anywhere Estimate, a.r.t. 2.86 [not 2.85] Standardise with $\sqrt{ } 300$, allow $\sqrt{ }$ errors, cc $z \in[1.53,1.54]$ or $p \in[0.062,0.063]$, not -1.535 Compare explicitly z with 1.645 or p with 0.05 , or $2 p>0.1$, not from $\mu=56.95$
(β)	$\begin{aligned} & \mathrm{CV}_{56.8 \pm 1.645 \times \sqrt{\frac{2.8637}{300}}}^{56.96>56.95} \end{aligned}$	M1 A1 A1 FT	$\begin{aligned} & 56.8+z \sigma / \sqrt{ } 300 \text {, needn't have } \pm \text {, allow } \sqrt{ } \text { errors } \\ & z=1.645 \\ & c=56.96, \quad \text { FT on } z \text {, and compare } 56.95 \quad\left[c_{L}=56.64\right] \end{aligned}$
	Do not reject H_{0}; insufficient evidence that mean thickness is wrong	M1 A1 FT	Consistent first conclusion, needs 300, correct method and comparison Conclusion stated in context, not too assertive, e.g. "evidence that" needed
8 (i)	$\int_{1}^{\infty} k x^{-a} \mathrm{~d} x=\left[k \frac{x^{-a+1}}{-a+1}\right]_{1}^{\infty}$ Correctly obtain $k=a-1$ AG	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	Integrate $\mathrm{f}(x)$, limits 1 and ∞ (at some stage) Correct indefinite integral Correctly obtain given answer, don't need to see treatment of ∞ but mustn't be wrong. Not k^{-a+1}
(ii)	$\begin{aligned} & \int_{1}^{\infty} 3 x^{-3} \mathrm{~d} x=\left[3 \frac{x^{-2}}{-2}\right]_{1}^{\infty}=11 / 2 \\ & \int_{1}^{\infty} 3 x^{-2} \mathrm{~d} x=\left[3 \frac{x^{-1}}{-1}\right]_{1}^{\infty}-\left(1 \frac{1}{2}\right)^{2} \end{aligned}$ Answer 3/4	M1 M1 A1 M1 A1 5	Integrate $\mathrm{xf}(x)$, limits 1 and ∞ (at some stage) [x^{4} is not MR] Integrate $x^{2} \mathrm{f}(x)$, correct limits Either $\mu=11 / 2$ or $\mathrm{E}\left(X^{2}\right)=3$ stated or implied, allow $k, k / 2$ Subtract their numerical μ^{2}, allow letter if subs later Final answer $3 / 4$ or 0.75 only, cwo, e.g. not from $\mu=-1 \frac{1}{1} 2$. [SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]
(iii)	$\begin{aligned} & \int_{1}^{2}(a-1) x^{-a} \mathrm{~d} x=\left[-x^{-a+1}\right]_{1}^{2}=0.9 \\ & 1-\frac{1}{2^{a-1}}=0.9, \quad 2^{a-1}=10 \\ & a=4.322 \end{aligned}$	M1* dep*M1 M1 indept $\text { A1 } 4$	Equate $\int \mathrm{f}(x) \mathrm{d} x$, one limit 2 , to 0.9 or 0.1 . [Normal: 0 ex 4] Solve equation of this form to get $2^{a-1}=$ number Use logs or equivalent to solve $2^{a-1}=$ number Answer, a.r.t. 4.32. T\&I: (M1M1) B2 or B0

Specimen Verbal Answers

$1 \quad \alpha \quad$ "Cases of infection must occur randomly, independently, singly and at constant average rate"
B0
$\beta \quad$ Above + "but it is contagious" B1
$\gamma \quad$ Above + "but not independent as it is contagious" B2
$\delta \quad$ "Not independent as it is contagious" B2
$\varepsilon \quad$ "Not constant average rate", or "not independent" B0
λ "Not constant average rate because contagious" [needs more] B1
ζ "Not constant average rate because more likely at certain times of year" B2
$\mu \quad$ Probabilities changes because of different susceptibilities B0
$v \quad$ Not constant average rate because of different susceptibilities B2
$\eta \quad$ Correct but with unjustified or wrong extra assertion [scattergun] B1
θ More than one correct assertion, all justified B2
$\pi \quad$ Valid reason (e.g. "contagious") but not referred to conditions B1
[Focus is on explaining why the required assumptions might not apply. No credit for regurgitating learnt phrases, such as "events must occur randomly, independently, singly and at constant average rate, even if contextualised.]

2 Don't need either "yes" or "no".
$\alpha \quad$ "No it doesn't invalidate the calculation" [no reason] B0
β "Binomial requires not chosen twice" [false] B0
γ "Probability has to be constant but here the probabilities change" B0
$\delta \quad$ Same but "probability of being chosen" [false, but allow B1] B1
$\varepsilon \quad$ "Needs to be independently chosen but probabilities change" [confusion] BO
$\zeta \quad$ "Needs to be independent but one choice affects another" [correct] B2
η "The sample is large so it makes little difference" [false] B0
$\theta \quad$ "The population is large so it makes little difference" [true] B2
$\lambda \quad$ Both correct and wrong reasons (scattergun approach) B1
[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.
Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition does require the possibility of the same person being chosen twice.]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Mathematics

Advanced GCE 4734

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1(i)	Total has Poisson distribution with mean $\begin{aligned} & \lambda=0.21 \times 5+0.24 \times 5=2.25 \\ & P(\geq 2)=1-e^{-\lambda}(1+\lambda) \\ & =0.657 \end{aligned}$	M1 A1 M1 A1 4	With $\times 5$ λ or $1+\lambda$ in brackets (their λ) Or interpolation from tables
(ii)	EITHER: Each Iength is a random sample OR: Flaws occur independently on the reels	$\begin{aligned} & \text { B1 } \\ & \mathbf{1} \\ & {[5]} \end{aligned}$	In context Accept randomly
2	$\begin{aligned} & \mathrm{H}_{0}: \mu=(\mathrm{or} \geq) 170, \mathrm{H}_{1}: \mu<170 \\ & \bar{x}=167.5 \\ & s^{2}=5.9 \end{aligned}$ EITHER: $(\alpha)(167.5-170) / \sqrt{ }(5.9 / 6)$ $=-2.52(1)$ Compare with -2.015 OR: $\begin{gathered} \text { (} \beta \text {) } 170-t \sqrt{ }(5.9 / 6) \\ =168.0 \end{gathered}$ Compare 167.5 with CV and reject H_{0} There is sufficient evidence at the 5% significance level that the machine dispenses less than 170 ml on average.	B1 B1 B1 M1 A1 M1 M1 A1 M1 A1 [7]	For both hypotheses; accept words SR 2-tail test: B0B1B1M1A1M1A0 Max 5/7 Standardise 167.5; + or - for M; /6 seen Explicitly Allow 2.571 Finding critical value or region. With $t=2.015$ or 2.571 Explicitly. Allow correct use of $\|t\|$ M0 if z used SR: B1 if no explicit comparison but conclusion "correct"
3(i)	H_{0} : There is no association between the area in which a shopper lives and the day they shop (H_{1} : All alternatives) $\begin{array}{lll}\mathrm{E} \text {-Values } & 27.3 & 14.7\end{array}$ $\begin{array}{ll} 37.7 & 20.3 \end{array}$ $x^{2}=(4.3-0.5)^{2}\left(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1}\right)$ $=2.606$ Compare with 2.706 Do not reject H_{0}. There is insufficient evidence of an association. SR: If H_{0} association, lose $1^{\text {st }} \mathrm{B} 1$ and last M1A1	M1 A1 M1 ft A1 A1 M1 A1 8	SR difference in proportions B1 define and evaluate p_{1} and p_{2} with H_{0} B1 for $p=0.42$ M1A1 for $z= \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one X^{2}, no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p=0.106$) SR: B1 if no explicit comparison, as Q2 SR: If H_{0} association, lose $1^{\text {st }} \mathrm{B} 1$ and last M1A1
(ii)	Conclusion the same since critical value $>$ 2.706 (and test statistic unchanged)	B1 1 [9]	OR from $z= \pm 2.17, S R$

4(i)	$\begin{aligned} & s^{2}=\left(1183.65-246.6^{2} / 70\right) / 69 \\ & \text { Use } \bar{x} \pm z s / \sqrt{ }(70) \\ & s / \sqrt{ }(70) \\ & 1.645 \\ & (3.10,3.94) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{5} \\ \hline \end{array}$	AEF Allow without ft or with s^{2}; with 70 Their s A0 if interval not indicated
(ii)	Change 90 to around 90	B1	Or equivalent
(iii)	$\begin{aligned} & 4(0.9)^{3}(0.1)+0.9^{4} \\ & =0.9477 \end{aligned}$	$\begin{array}{cc} \text { M1 } & \\ & \\ \text { A1 } & \mathbf{2} \\ & {[8]} \end{array}$	Üse of bino with $p=0.9$ or 0.1 and 4 and Correct terms considered. art 0.948
5(i)	$\begin{aligned} & \mathrm{e}^{-2.25}-\mathrm{e}^{-4} \\ & \times 150 \\ & =13.1 \\ & \text { Last: } 150-\text { sum }=2.7 \end{aligned}$	M1 A1 A1 A1 ft 4	Or find last entry using $F(x)$ Or 2.7 if found first Or 13.1 any accuracy
(ii)	$\left(\mathrm{H}_{0}\right.$: Data fits the model, H_{1} : Data does not fit) Combine last two cells $x^{2}=7.8^{2} / 33.2+11.6^{2} / 61.6+7.4^{2} / 39.4+$ 11.2 ${ }^{2} / 15.8$ $=13.3(46)$ Compare with 9.348 (or 11.14), reject H_{0} (There is sufficient evidence at the $2 \frac{1}{2} \%$ significance level that) the model is not a good fit	B1 M1*Dep A1 A1 M1 A1 ft Dep* $[10]$	Ät least two correct All correct In range 13.2 to 13.5 SR: If last 2 cells are not combined B0M1A1A1 (for 13.5) M1A1 If no explicit comparison B1 if conclusion follows
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $\begin{aligned} & H_{0}: \mu_{E}=\mu_{C}, H_{1}: \mu_{E}<\mu_{C} \\ & s^{2}=(1923.56+1147.58) / 29(=105.9) \\ &(t)\left.=(32.16-38.21) / \sqrt{2} 105.9\left(18^{-1}+13^{-1}\right)\right] \\ &=-1.615 \\ & t_{\text {crit }}=-1.699 \end{aligned}$ Compare -1.615 with -1.699 and do not reject H_{0} There is insufficient evidence at the 5\% significance level to show that anxiety is reduced by listening to relaxation tapes	$\begin{array}{ll}\text { B2 } \\ & \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \\ & \\ \text { M1 } \\ & \\ & \\ \text { A1 } \mathrm{ft} & \\ & 10\end{array}$	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg $s^{2}=$ 1923.56/(17or18) All correct 47.5/(12or13) Or + Or + ; accept art ± 1.70 Or,++ M0 if t not $\pm 1.699, \pm 2.045$ In context, not over-assertive OR Find CV or CR: B2B1B1; $\mathrm{C}=$ or $\geq s t, t= \pm 1.699$ or ± 2.015 M1A1 $t= \pm 1.699 \mathrm{~B} 1 ; \mathrm{G}=6.11(2) \mathrm{A} 1$; $6.112>6.05$ and reject H_{0} etcM1A1
(ii)	Sample sizes are too small (to appeal to CLT)	$\begin{aligned} & \text { B1 } \\ & {[11]} \end{aligned}$	

7(i)	$\begin{aligned} & \text { Use } \sum F+\sum M \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \\ & \mu=1104.9 \\ & \sigma^{2}=6 \times 9.3^{2}+9 \times 8.5^{2} \\ & =1169.2 \\ & \mathrm{P}(>1150)=1-\Phi([1150- \\ & 1104.9] / \sqrt{ }(1169.2) \\ & =0.0937 \end{aligned}$	M1 A1 M1 A1 M1 A1 $\mathbf{6}$	Sum of indep normal variables is normal Standardise, correct tail. M0 $\sigma / \sqrt{ } 15$ Accept 094
(ii)	If unknown M , prob $\frac{1}{2}, 6 \mathrm{~F}$ and 9 M as before. If unknown W, prob $\frac{1}{2}, 7 \mathrm{~W}$ and 8 M Having $N(1093.3,1183.4)$ $\begin{aligned} & P(>1150)=1-\Phi(1.648)=0.0497 \\ & P=\frac{1}{2} \times 0.0936+\frac{1}{2} \times 0.0497 \\ & =0.07165 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 B1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A } \\ & 6 \\ & {[12]} \end{aligned}$	Considering two cases Mean and variance Use of $\frac{1}{2}$ ART 0.072
8(i)	$\begin{aligned} & X=\frac{1}{4} S^{2} \\ & \quad F(s)=\int_{1}^{s} \frac{8}{3 s^{3}} \mathrm{~d} s=\left[-\frac{4}{3 s^{2}}\right]_{1}^{s} \\ & \\ & =\frac{4}{3}\left(1-1 / s^{2}\right) \\ & \mathrm{G}(x) \\ & =\mathrm{P}(X \leq x)=\mathrm{P}(S \leq 2 \sqrt{ } x) \\ & \\ & =\mathrm{F}(2 \sqrt{ } x) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 ft } \\ & \\ & \text { M1 } \\ & \text { B1 } \\ & 7 \end{aligned}$	Ignore range here SR: B1 for $\mathrm{G}(x)=\mathrm{F}(2 \sqrt{ } \mathrm{x})$ without justification and with correct result ft F For $\mathrm{G}^{\prime}(a)$ For range
(ii)	EITHER: $\mathbf{G}(m)=\frac{1}{2}$ $\begin{aligned} & \Rightarrow \frac{4}{3}-\frac{1}{3 x}=\frac{1}{2} \\ & \Rightarrow m=\frac{2}{5} \end{aligned}$ $\begin{aligned} & \text { OR: } \int_{1 / 4}^{m} \frac{1}{3 x^{2}} \mathrm{~d} x=\frac{1}{2} \\ & \Rightarrow\left[-\frac{1}{3 x}\right]_{1 / 4}^{m}=\frac{1}{2} \\ & \Rightarrow \quad m=\frac{2}{5} \end{aligned}$	M1 A1 ft A1 M1 A1 A1 A1 3 [10]	$\mathrm{ft} \mathrm{G}(x)$ in (i) CAO Allow wrong $\frac{1}{4}$ Allow wrong $\frac{1}{4}$ CAO

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1(i)	$\begin{aligned} & \operatorname{Var}(2 A-3 B)=4 \operatorname{Var}(A)+9 \operatorname{Var}(B)-12 \operatorname{Cov}(A, B) \\ & \Rightarrow 18=36+54-12 \operatorname{Cov}(A, B) \\ & \Rightarrow \operatorname{Cov}(A, B)=6 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Correct formula. Allow one error Substitute relevant values CAO
(ii)	Since $\operatorname{Cov}(A, B) \neq 0, A$ and B are not independent	B1 ft 1 (4)	Must have a reason. ft Cov $\neq 0$
2(i)	$\begin{aligned} \mathrm{G}^{\prime}(t) & =8 t \mathrm{e}^{4 t^{2}} / \mathrm{e}^{4} \\ \mathrm{E}(X) & =\mathrm{G}^{\prime}(1) \\ & =8 \end{aligned}$	M1A1 A1 3	M1 for $\mathrm{ct}^{2} / \mathrm{e}^{4}$
(ii)	EITHER: $G(t)=\mathrm{e}^{-4}\left(1+4 t^{2}+\ldots\right)$ $\mathrm{P}(X=2)=$ coefficient of $t^{2}=4 \mathrm{e}^{-4}$ or $4 / \mathrm{e}^{4}$ or 0.0733 OR $\mathrm{G}^{\prime \prime}(t)=\left(8+64 t^{2}\right) \mathrm{e}^{4 t^{2}}$ $\mathrm{P}(X=2)=\frac{1}{2} \mathrm{G}^{\prime \prime}(0)=4 \mathrm{e}^{-4}$ or $4 / \mathrm{e}^{4}$ or 0.0733	$\begin{array}{ll} \text { M1A1 } \\ \text { A1 } & 3 \\ \text { M1A1 } \\ \text { A1 } & \end{array}$ (6)	Expand in powers of t M1 for reasonable attempt at $\mathrm{M}^{\prime \prime}(t)$
3(i)	$\begin{aligned} & \text { Number of different rankings }{ }^{11} \mathrm{C}_{5} \\ & =462 \\ & \text { For } R \leq 17: \begin{array}{l} 1+2+3+4+5=15 \\ 1+2+3+4+6=16 \\ 1+2+3+5+6=17 \\ 1+2+3+4+7=17 \\ \\ P(R \leq 17)=4462=2 / 231 \end{array} \end{aligned}$	M1 A1 B2 A1 5	Number of selections of 5 from 11 B1 for 2 or 3 correct
(ii)	$\begin{aligned} & W=17 \\ & \mathrm{P}(W \leq 17)=\frac{2}{231} \\ & \text { Smallest } \mathrm{SL}=\frac{400}{231} \% \end{aligned}$	M1 A1ft 2 (7)	Allow $\frac{4}{231} ; \mathrm{ft} \frac{2}{231}$, but must be exact
4(i)	$\begin{aligned} & \text { EITHER: }(\alpha) \mathrm{M}^{\prime}(t)=n(1-2 t)^{-1 / 2 n-1} \\ & \mathrm{E}(Y)=\mathrm{M}^{\prime}(0)=n \\ & \mathrm{M}^{\prime \prime}(t)=n(n+2)(1-2 t)^{-1 / 2 n-2} \\ & \operatorname{Var}(Y)=n(n+2)-n^{2}=2 n \\ & \mathrm{OR}: \mathrm{M}(t)=1+n t+\frac{1}{2} n(n+2) t^{2} \\ & \mathrm{E}(Y)=n \\ & \operatorname{Var}(Y)=n(n+2)-n^{2}=2 n \end{aligned}$	M1 A1 A1 M1 A1 5 M1A1A1 A1 A1 5	Correct form for M1 Ft similar $\mathrm{M}^{\prime}(t)$ $M^{\prime \prime}(0)-\left(M^{\prime}(0)\right)^{2}$
(ii)	$\overline{M G F}=(1-2 t)^{-}$ X^{2} distribution with 60 d.f.	$\begin{array}{ll} & \\ \text { B1 } & 2 \end{array}$	From $\left[(1-2 t)^{-1 / 2}\right]^{\overline{0} 0}$
(iii)		B1ft M1 A1 3 $\mathbf{1 0)}$	From (i) Correct tail: allow cc

5(i)	Assumes salaries symmetrically distributed $H_{0}: m($ edian $)=19.5, H_{1}: m($ edian $) \neq 19.5$ $P=867$ (or 408) Using normal approximation $\begin{aligned} & \mu=1 / 4 \times 50 \times 51(=637.5) \\ & \sigma^{2}=50 \times 51 \times 101 / 24(=10731.25) \\ & z=(a-637.5) / \sqrt{2} 10731.25 \end{aligned}$ $\text { Use } a=866.5$ $=2.211$, or 2.215 or 2.220 (- from 408) Compare their z with 1.96 and reject H_{0} There is sufficient evidence at the 5% SL that the median salary differs from $£ 19$ 500	$\begin{array}{\|l} \hline \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ \mathrm{M} 1 \\ \\ \text { A1 ft } \\ \text { 10 } \end{array}$	In context For both ; not μ; accept words $a=866.5,867,867.5 \text { (or 408.5, }$ 408, 407.5) Or p-value rounding to 0.026 or 0.027 Compare with 0.05 or equivalent $\mathrm{ft} z$ Or find critical region
(ii)	Üse sign test when salary distribution is skewed	B1 (11)	
6(i)		$\begin{array}{\|l} \text { B1 } \\ \text { M1 } \\ \\ \text { A1 } \\ 3 \end{array}$	Calculate 9 probs in terms of c
(ii)	$\begin{aligned} & 9 c / 27 c \\ & =\frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 ft } \\ & 2 \end{aligned}$	Marginal probability AEF; ft c
(iii)	$\begin{aligned} & P(N+R>2) \\ & =15 c / 27 c=\frac{5}{9} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 ft } \\ 2 \end{array}$	AEF; ft c
(iv)	$\begin{aligned} & \mathrm{P}(R=2)=\frac{15}{27} \\ & \mathrm{P}(N \mid R=2): p_{0}=\frac{4}{15}, p_{1}=\frac{1}{3}, p_{2}=\frac{2}{5} \\ & \mathrm{E}(N \mid R=2)=1 \times \frac{1}{3}+2 \times \frac{2}{5} \\ & =\frac{17}{15} \end{aligned}$	M1 A1 ft A1 ft A1 4	Using conditional probabilities One value; ft values in (i) All values Or 1.13
(v)	$\operatorname{Eg} P(N=0$ and $R=0)=0$ $\mathrm{P}(N=0) \times \mathrm{P}(R=0)=\frac{6}{27} \times \frac{3}{27} \neq 0$ So N and R are not independent	M1 A1 2 (13)	Or from conditional probs MO from $N=1$ with $R=1$ or 2 All correct

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail:

1(i) (a)	31758742437056619528 (may be shown vertically or as separate swaps) 9 comparisons and 8 swaps The smallest (final) mark, 28	M1 A1 B1 B1	[4]	28 moved to the end of the list, no other values moved Correct list at end of first pass (cao) 9 and 8 (written, not tallies) (cao) - if not specified, assume the larger value is comparisons (their) 28 or smallest/least or final/last/end If sorted into increasing order: 2831754243705661 8795 M0 A0, then 9 and $6=\mathrm{B} 1$ and (their) 95 or largest/greatest/biggest or final//last/end = B1
(b)	75874243705661953128	B1	[1]	Correct list at end of second pass If sorted into increasing order and already penalised in (i)(a) then condone here: 28314243705661758795
(c)	7 more passes	B1	[1]	$7 \text { (cao) }$
(ii)	$\begin{array}{llllllllll} \hline 31 & 28 & 75 & 87 & 42 & 43 & 70 & 56 & 61 & 95 \\ 75 & 31 & 28 & 87 & 42 & 43 & 70 & 56 & 61 & 95 \end{array}$ 1 comparison and 0 swaps in first pass 2 comparisons and 2 swaps in second pass	M1 A1 B1 B1	[4]	312875 or 312875 ... Correct list, in full, at end of second pass Lists must be easily found, not picked out from working, if the candidate has labelled passes use them as labelled 1 and 0 (written)(cao) may appear next to list 2 and 2 (written)(cao) may appear next to list If sorted into increasing order: 283175 ... $\mathrm{M} 0, \mathrm{~A} 0$, then 1 and $1=\mathrm{B} 1 ; 1$ and $0=\mathrm{B} 1$
(iii)	Bubble sort does not terminate early, since it takes 9 passes to get 95 to the front of the list, so it uses $9+8+\ldots+1$ or 45 comparisons Shuttle sort takes fewer than $1+2+\ldots+9$ comparisons, since, for example, in the fourth pass 42 will be compared with 28,31 and 75 but not with 87.	B1 B1	[2]	Identifying that bubble sort does not terminate early (Just stating $9+8+\ldots+1$ or $45=\mathrm{B} 0$) Allow 'the largest number is at the end of the list' or '95 at end' A good explanation of why shuttle sort requires fewer comparisons in this particular case Do not accept 'because the list is not in reverse order'
(iv)	$\begin{aligned} & 20 \times\left(\frac{50}{10}\right)^{2} \\ & =500 \text { seconds } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Correct method 500 seconds or 8 mins 20 sec (without wrong working)

2(i)	Cannot have an odd number of odd nodes Odd vertices come in pairs	B1	[1]	Sum of orders must be even Sum of orders is 9 so 4.5 arcs (which is impossible)
(ii)	eg Many other correct possibilities	M1 A1	[2]	A diagram showing a graph with four vertices that is not connected and not simple Vertices have orders 1, 2, 3, 4
(iii)	The vertex of order 4 needs to connect to four other vertices, but there are only three other vertices available, so one vertex must be joined twice or the vertex of order 4 is connected to itself. Hence the graph cannot be simple	M1 A1	[2]	Specifically identifying that the problem is with the vertex of order 4 Explaining why the graph cannot be simple (either reason) and stating that simple cannot be achieved Ignore any claims about whether or not the graph is connected
(iv) (a)	Each vertex of order 4 connects to each of the others, since graph is simple. Hence the other two vertices must have order (at least) 3. But Eulerian, so all must have order 4.	B1	[1]	Any reasonable explanation, but not just a diagram of a specific case 'the other two must be odd but they can't because Eulerian' is not enough Note: the graph has five vertices
(b)	Graph is Eulerian - so each vertex order is even; simple - so no vertex has order more than 4; and connected - so no vertex has order 0 . Hence each vertex has order either 2 or 4 . But cannot have 3 or 4 vertices of order 4 . So must have $0,1,2$ or 5 vertices of order 4.	B1 M1 A1	[3]	Explaining why there are only four such graphs Or list all the possibilities (eg 222224222244222 44444) Any two correct (note: must be simply connected and Eulerian) All four correct and no extras (apart from topologically equivalent variations)

3(i)	$\begin{aligned} & y \geq x \\ & x \geq 0 \\ & y \leq 7-\frac{2}{3} x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]	Boundaries $y=x$ and $x=0$ in any form (may be shown as an equality or an inequality with inequality sign wrong) Boundary $2 x+3 y=21$ in any form All inequalities correct (and any extras do not affect the feasible region)
(ii)	$\begin{aligned} & (0,7) \Rightarrow 42 \\ & (4.2,4.2) \Rightarrow 29.4 \text { or }\left(\frac{21}{5}, \frac{21}{5}\right) \Rightarrow \frac{147}{5} \end{aligned}$ At optimum, $x=0$ and $y=7$ $P_{1}=42$	M1 A1 A1	[3]	Substantially correct attempt at testing vertices (at least one vertex apart from $(0,0)$) or using a line of constant profit (may be implied) Accept (0,7) identified (cao) 42 (stated) (cao) NOT deduced from earlier working, unless identified
(iii)	$\begin{aligned} & (4.2,4.2) \\ & P_{k}=4.2(k+6) \text { or } 4.2 k+25.2 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]	cao cao
(iv)	$\begin{aligned} & \text { Compare } k x+6 y \text { with boundary } 2 x+3 y \\ & \text { or algebraically, } 4.2(k+6) \text { with } 42 \\ & \text { or }-\frac{k}{6} \text { with }-\frac{2}{3} \\ & \Rightarrow k \leq 4 \\ & k \leq 4 \text { or } k<4 \text { implies M1, A1 } \end{aligned}$	M1 A1	[2]	Algebraically or using line, or implied (allow = here) Accept $k<4$ No need to say that $k>0$, but candidates may also say $k>$ 0 $\text { or } k \geq 0$ Note: k is continuous, so answers such as ' $k=1,2,3,4$ ' or ' $k=1,2,3$ ', with no other working, would get M1, A0

4(i)	Route: $A-B-D-F-G$	M1 A1 B1 B1 B1	[5]	1.7 shown as a temporary label at G All temporary labels correct with no extras (may not have written temporary label when it becomes permanent) All permanent labels correct (cao) Order of labelling correct (cao) This route written down (not reversed) (cao)
(ii)	Route Inspection problem	B1	[1]	Accept Chinese postman Allow 'postman', 'postman route', but not just 'inspection'
(iii)	$\begin{aligned} & C D(C B D)=0.3, D G(D F G)=0.65, \\ & C G(C B D F G)=0.95 \\ & C D(C B D) \text { and } F G=0.75 \\ & \text { or } C D(C B D) \text { and } E G(E F G)=1.05 \\ & \text { Length }=3.7+0.5+0.3+0.75 \\ & =5.25 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		Any one of these seen (explicitly or as part of a calculation) All three of these seen (explicitly or as parts of calculations) Or either of these with $A B$ to give 1.25 or 1.55 respectively Adding their 0.75 to 3.7 or their 0.75 to $3.7+0.5+0.3$ (cao) units not needed 5.25 implies M1, M1 A1, irrespective of working
(iv)	$\begin{aligned} & B-D-F-G-C-B \\ & 1.9 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$		cao 1.9 (cao) irrespective of method
(v)	[TREE] Vertices added in order $B D C F$ or $B D F C$ Arcs added in order $B D, B C, D F$ or $B D, D F, B C$ Two shortest arcs from G total $0.45+0.65=1.1$ Lower bound $=0.5+1.1=1.6 \mathrm{~km}$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$		Correct tree drawn A valid order of adding vertices or a valid order of adding arcs 0.45 and 0.65 , or total 1.1 (may be implied from 1.6) 1.6 (cao) units not needed 1.6 implies M1, A1

	Make 5 litres of fruit salad only	B1	[13]	Interpretation of their final (non-negative) \underline{x}, y and z, in context (need 'only' or equivalent; '5 fruit salads' is not enough) $x=5, y=0, z=0 \text { gives B0 }$
(iii)	$60 \div 12=5,50 \div 6=8 \frac{1}{3}, 20 \div 3=6 \frac{2}{3}$ Pivot on the 12 in the x column New row $2=$ row $2 \div 12$ New row 1 = row $1+100 \times$ new row 2 Showing that there are no negative entries in objective row Saying that optimum has been achieved ('no negatives in top row')	B1 M1 A1 M1 A1	[5]	Correct pivot choice from their x column Correct method for their pivot row (seen or implied from correct row in tableau) Correct method for their objective row seen as a formula Showing that there are no negative entries in objective row Or achieving a final tableau, in one iteration, with exactly four basis columns and non-negative entries in final column, in which the value of the objective has not decreased

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU
 OCR Customer Contact Centre

14-19 Qualifications (General)

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

Mathematics

Advanced GCE 4737
Decision Mathematics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	(i)		B1	A correct bipartite graph	1]
	(ii)		B1	A second bipartite graph showing the incomplete matching correctly No augmentations made, even if in pencil. Ignore the addition of an X vertex though.	[1]
	(iii)	$\begin{aligned} & \hline H-P-G-Q \\ & \text { Axe handle }=\text { Prof Mulberry } \\ & \text { Broomstick }=\text { Miss Olive } \\ & \text { Drainpipe }=\text { Mrs Lemon } \\ & \text { Fence post }=\text { Mr Nutmeg } \\ & \text { Golf club }=\text { Rev Quince } \\ & \text { Hammer }=\text { Capt Peach } \end{aligned}$	B1 B1	This path in any reasonable form or in reverse. Accept $X-H-P-G-Q$ Not any longer path from H to Q This complete matching written down (use initials of surnames if ambiguous, eg Rev Pineapple is interpreted as $P=$ Capt Peach)	[2]
	(iv)	$\begin{aligned} & \hline \text { Axe handle = Rev Quince } \\ & \text { Broomstick = Prof Mulberry } \\ & \text { Drainpipe = Mr Nutmeg } \\ & \text { Fence post }=\text { Miss Olive } \\ & \text { Golf club }=\text { Capt Peach } \\ & \text { Hammer }=\text { Mrs Lemon } \end{aligned}$	M1 A1	A different complete matching in any form A valid complete matching in which none of the suspects uses the same weapon as in their solution to (iii)	[2]
Total $=$					6

5	(i)	$\begin{aligned} & 21+36+7+18 \\ & =82 \end{aligned}$	M1 A1	Evidence of using the correct cut (eg 21 ($\pm 23)+36+7+18$ seen) 82	[2]
	(ii)	At most 17 can leave C so there cannot be as much as 20 or 18 entering it At most 17 can enter E so there cannot be $7+18$ $=25$ leaving it Maximum that can flow in arc $H T$ is 33 Flow along arc $H G=0$	B1 B1 B1 B1	$17<$ both 20 and 18 (NOT $17<38$) $17<7+18$	[2] [2]
	(iii)	A diagram showing a flow of 58 in which amount in equals amount out at each vertex, apart from S and T Arcs $C E, F H$ and $G T$ are saturated and other arc capacities are not exceeded $\operatorname{Cut} X=\{S, A, B, C, D, F, G\}, Y=\{E, H, T\}$ Or cut through $G T, G H, F H, E F$ and $C E$	M1 A1 B1	Assume that "blanks" mean 0 or full to capacity, provided consistent This cut presented in any form (accept it drawn on diagram)	[3]
	(iv)	Substantially correct attempt in which excess capacities and potential backflows marked correctly on arcs $C E, F H$ and $G T$ Their excess capacities and potential backflows marked correctly on arcs out of S and arcs into T and on $H G$	M1 A1	Assume that blanks mean 0 Accept all directions swapped Check directions on $\underline{H G}$ carefully If no flow in (iii), or ambiguous, then any valid flow > 0 labelled correctly gets M1, but must also be a flow of 58 to get A1	[2]
	(v)	Feasible route(s) written that send an additional 2 through system (or more on follow through) All route(s) valid with an additional 2 along $G H$	M1 A1	Routes must be written out properly eg route $S B F G H T$ by 2	[2]
	(vi)	Their flow from part (iii) augmented by their routes in part (v) No more can flow across the cut $X=\{S, C\}, Y=\{A, B, D, E, F, G, H, T\}$	M1 A1	Follow through if possible Any reasonable explanation	[2]
				Total =	15

PARTS (i), (ii) AND (iii) ANSWERED ON INSERT

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

