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Introduction 

There is a lot of interest in providing detailed reports to schools indicating which skills pupils 

have mastered and which still need development – and, more broadly, the knowledge, skills 

and understanding that pupils have acquired and not yet acquired. Cognitive diagnostic 

assessment is an approach designed to provide this kind of insight. The core assumption is 

that correctly answering a question depends on having mastery of a specific set of latent 

skills and/or knowledge. By asking test takers to attempt carefully constructed sets of well-

designed items, and then analysing their responses, we can make detailed inferences about 

the attributes they have and have not mastered (Leighton & Gierl, 2007b). Rather than 

producing a score or grade (or even multiple scores), the aim of a cognitive diagnostic 

assessment is to assign test takers to discrete classes based on their mastery of the 

different attributes (e.g., skills) being measured in the test. In this way, cognitive diagnostic 

assessment provides both fine-grained information about the skill profiles of individual test-

takers, and the identification of latent subgroups in the test-taking population (Ma et al., 

2023). 

Deriving such fine-grained inferences from test-takers’ responses is not a trivial task 

(Leighton & Gierl, 2007b, pp. 11-14). Cognitive diagnostic assessment requires a detailed 

theory or model of the knowledge and skills to be measured, and how they relate to items. 

This theory then guides the assessment design, which may follow a formalised approach 

such as Evidence Centred Design (Mislevy et al., 2003) to ensure sufficiently robust validity. 

Cognitive diagnostic assessment then requires specific technical approaches to modelling 

and interpreting test-takers’ responses. Cognitive Diagnostic Models (CDMs) — also known 

as Diagnostic Classification Models (DCMs) — are an important mainstream formal 

approach to this modelling. CDMs are a subset of multidimensional latent variable models, 

designed to “diagnose” students according to their mastery of the various skills or attributes 

being measured in a particular domain.  

Leighton and Gierl’s comprehensive Cognitive Diagnostic Assessment for Education (2007a) 

summarised the state of cognitive diagnostic assessment and raised its profile. At this time, 

CDMs presented attractive possibilities, but there existed many competing approaches and 

some obstacles to practical implementation. In recent years, there have been major 

developments in cognitive diagnostic assessment and the field of CDM research specifically. 

Meanwhile, the demand for detailed reporting – for the purposes of formative assessment 

but also to investigate and evidence assessment validity – has continued to grow. There is 

also increasing interest in estimating learners’ mastery of specific skills in order to facilitate 

adaptivity and personalisation within digital learning and assessment products – for example, 

to drive recommendation systems that suggest pages of interactive learning material based 

on the skills shown to have been mastered (or not mastered) so far. Cognitive diagnostic 

models are a significant area of overlap between psychometrics and the techniques 

employed within advanced digital learning systems, such as intelligent tutoring systems. 

The overarching aim of this report is to give an up-to-date view on cognitive diagnostic 

models and what they might offer. In particular, it considers how assessment organisations 

could use CDMs to provide something of meaningful value to schools, and what would be 

required to make this work.   
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Research questions 

The core questions to address are: 

1. In a “best-case” scenario (sufficient resources to meet sample size, item construction 

and test design requirements), how would reporting to schools based on CDMs be an 

improvement upon (i) raw sub-score reporting by topic, (ii) topic or domain scaled 

scores (e.g., Cambridge English scale scores, Cambridge Checkpoint scores), or (iii) 

raw item level results? 

2. What would be the minimum requirements in terms of sample sizes, number of items 

and test design considerations to allow valid reporting based on CDMs? 

3. Are CDMs a technology that assessment organisations could use to report outcomes 

from existing assessments? 

4. What are the considerations around score interpretation and transparency? 

5. For which purposes, subjects and customers might assessment organisations want 

to use CDMs? 

Background: what counts as a CDM? 

Surveying the field of cognitive diagnostic modelling is not an entirely straightforward 

exercise. In their introduction to the Handbook of Diagnostic Classification Models, von 

Davier and Lee (2019b, p. 1) recognised a need for clarification, but did not sound overly 

optimistic: “We are attempting to organize the growing field somewhat systematically to help 

clarify the development and relationships between models. However, given the fact that 

DCMs have been developed based on at least two, if not three traditions, not all readers may 

necessarily agree with the order in which we put the early developments.” Complicating 

factors include that different authors use the term “CDM” with different scope1, and that 

research has regularly shown equivalencies between previously separate lines of model 

development. That is, different models “may be later understood as variants of one common 

more general approach” (von Davier & Lee, 2019b, p. 2). Besides these specific factors, the 

field of CDMs may also be described differently depending on whether authors take an 

historical view; organise modelling approaches by technical features (e.g., statistical 

assumptions); offer an account framed by one unifying model; or concentrate on the 

practicalities of applications.2  

Zhang et al. (2023) offer a useful account of statistical approaches to cognitive diagnostic 

assessment, and the relation of mainstream CDM methods to predecessor approaches and 

other psychometric models. They propose that the two main precursors to cognitive 

diagnostic testing were “mastery testing based on the IRT framework” (pp. 653-654), and the 

mastery model based on latent class models (e.g., Macready & Dayton, 1977). This mastery 

 

 

1 This also applies to the alternative term “DCM”.  
2 The challenge of defining CDMs is far from new: Rupp and Templin (2008b) dedicate a substantial 
section of their review paper to “the more exact definitional boundaries of DCM” (p. 224). They argue 
that applied assessment practitioners and specialists will “typically want to understand how particular 
models differ from one another in more detail rather than what the largest statistically [sic] family is 
that they can be subsumed under”. Their discussion also highlights what different choices of labels 
prioritise (Rupp & Templin, 2008b, pp. 225-227). For reference, Appendix A lists different definitions 
of “CDM” from major researchers in the field, as well as definitions for other key terms and 
abbreviations used in this report.  

https://www.cambridgeenglish.org/exams-and-tests/cambridge-english-scale/
https://www.cambridgeinternational.org/programmes-and-qualifications/cambridge-primary/assessment/cambridge-primary-checkpoint/
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model assumes that test-takers belong to one of a set of pre-specified latent classes with a 

hierarchical structure, and models the relationship between class membership and observed 

test responses. The rule space method (RSM - Tatsuoka, 1983) and knowledge space 

theory (Doignon & Falmagne, 1985, 2012) are credited by Zhang et al. as independently 

developed approaches that between them established the framework for cognitive diagnostic 

assessment as we now know it. Zhang et al. (2023, p. 655) formally define this framework as 

follows: 

1. “Performance on a test is assumed to depend on the mastery status, or knowledge 

state (Tatsuoka, 2009), of a collection of K attributes, denoted 𝜶 = (𝛼1, …𝛼𝐾)
′” 

a. “For simplicity, we assume binary latent attributes where 𝛼𝑘 ∈ {0,1} for each 

k, indicating mastery/nonmastery of the kth attribute, but this can be extended 

to ordinal attributes where different levels of mastery are assumed (e.g., Chen 

& de la Torre, 2013).”  

2. “The attributes can be skills, procedures, and knowledge that are required for solving 

an item, and the set of attributes assessed by a test is typically identified by domain 

experts (Tatsuoka, 1990).”  

3. “The attributes may be either parallel or hierarchical, where one is the prerequisite to 

mastering another … In the latter case, the number of permissible attribute patterns 

can be less than 2K.” 

4. “Consider a J-item test. The relationship between items and attributes is defined via a 

Q-matrix, a J × K incidence matrix indicating the presence (𝑞𝑗𝑘 = 1) or absence (𝑞𝑗𝑘 = 

0) of a connection between each item and each attribute. We say an attribute k is a 

requisite skill of item j if 𝑞𝑗𝑘 = 1.” 

Arithmetic test example 

Throughout this report, I will return to the same example to illustrate the concepts introduced 

wherever possible. The example is a mini “test” consisting of four arithmetic items, adapted 

from the example presented by Rupp et al. (2010, Chap. 10), which will be analysed within 

the cognitive diagnostic framework defined above. Success on this test is assumed to 

depend on mastery of two attributes, addition (𝛼1) and subtraction (𝛼2), which are coded on 

dichotomous scales and not considered to have any hierarchical relationship or dependency. 

The number of possible attribute profiles (and hence latent classes) is therefore 22, and 

these possible profiles are listed in Table 1. The relationship between the four items and two 

attributes is given by the Q-matrix in Table 2; this shows that attribute 1 (addition) is 

considered a requisite skill for items 1, 3 and 4, and attribute 2 (subtraction) is a requisite 

skill for items 2, 3 and 4.    

Table 1: Possible attribute profiles for example arithmetic test. 

Attribute profile 𝛼1: addition 𝛼2: subtraction 

𝜶1 = [0,0] 0 0 

𝜶2 = [0,1] 0 1 

𝜶3 = [1,0] 1 0 

𝜶4 = [1,1] 1 1 
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Table 2: Q-matrix for example arithmetic test. 

Item 𝛼1: addition 𝛼2: subtraction 

Item 1: 3 + 5 = ? 1 0 

Item 2: 6 – 2 = ? 0 1 

Item 3: 2 + 3 – 1 = ? 1 1 

Item 4: 9 – 5 + 2 = ? 1 1 

 

CDMs are an example of the probabilistic models built upon the cognitive diagnostic 

assessment framework. They are examples of restricted latent class models in which both 

the number of latent classes involved and their interpretations are known in advance (de la 

Torre & Minchen, 2019). What motivated their development was the need “to account for the 

stochastic relationship between the theorised attribute profile and the observed responses” 

(Zhang et al., 2023, p. 656).  

Many different CDMs have been developed, and they share the core assumption that “the 

solution of an item depends on the availability of a set of latent attributes, and for different 

items different albeit partly overlapping subsets of latent attributes may be required” (von 

Davier & Lee, 2019b, p. 29). They differ from each other in their complexity, in how or where 

measurement error is accounted for in the model, and the assumptions they make about 

how skills combine – that is, “how different skills are combined to affect the correct response 

probability for an item” (Zhang et al., 2023, p. 656). In models assuming a compensatory 

relationship between attributes, a test taker’s probability of success on an item is generally 

higher when they possess a higher number of the required attributes. By contrast, when the 

assumed relationship is conjunctive, the test taker is assumed to need mastery of all 

required attributes to successfully answer an item. In other words, “it does not matter 

whether a person does not master any attributes, or if a person has all but one required 

attribute, the probability of a success is the same (and typically low)” (von Davier & 

Haberman, 2014, p. 340). 

Definitional complications 

Different authors have used the term “CDM” to include and exclude slightly different subsets 

of models. In this report, the default meaning of “Cognitive Diagnostic Models” is that given 

by George and Robitzsch (2021, p. 107): “a class of multidimensional categorical latent 

variable models that integrate theoretical assumptions about skills and then estimate the 

students’ possession of these skills.” This definition is consistent with the statistical account 

by Zhang et al. (2023), and usage by major researchers in the field, for example de la Torre 

and Minchen (2019, p. 155), Sen and Cohen (2021, p. 1), Deonovic et al. (2019, p. 444) and 

Ravand and Baghaei (2020, p. 25). It also aligns with distinctions that are consistently drawn 

by researchers writing about cognitive diagnostic assessment, even where definitions are 

absent. For example, to explain the motivations for research into higher-order CDMs and 

multidimensional IRT (MIRT), Min et al. (2021) contrast these approaches with (implicitly 

“ordinary”) CDMs. 

Unlike the other authors cited in this report, Bradshaw and Levy (2019) draw a distinction 

between “CDMs” and “DCMs”. They describe CDMs informally as models that “categorize 

examinees according to mastery levels for a set of hypothesized latent skills”, before stating 

that (p. 79) “These classification-based models, collectively termed cognitive diagnosis 
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models (CDMs), can be organized into four major frameworks: rule space methodology 

(RSM; Tatsuoka, 1983), the attribute hierarchy method (AHM; Leighton et al., 2004), 

diagnostic classification models (DCMs; e.g., Bradshaw, 2016; Rupp et al., 2010), and 

Bayesian networks (BNs; e.g., Almond et al., 2015).” Roughly speaking, Bradshaw and Levy 

(2019) are using the term “CDM” to refer to a subset of what other authors call “cognitive 

diagnostic assessment” methods, and using the term “DCM” where other authors may use 

“DCM” or “CDM” (or both). Figure 1 and Figure 2 show where the terms “DCM” and “CDM” 

sit within the overall domain of cognitive diagnostic assessment, for clarity. Bradshaw and 

Levy’s usage of these terms does not appear to have been adopted more widely. 

 

Figure 1: Mainstream terminology usage in cognitive diagnostic assessment.  

 

 

Figure 2: Use of terms "CDM" and "DCM" by Bradshaw and Levy (2019). 

Attribute scales 

Theoretically, the attributes in a CDM can be coded on any discrete scale. However, 

presentations and explanations of CDMs often appear to assume a dichotomous scale (i.e., 

mastered/not mastered), and in practice, attributes are indeed usually coded as dichotomous 

(Rupp, 2023, pp. 4-5; von Davier & Haberman, 2014). Bradshaw and Levy (2019) note this 

is true for all four of the modelling approaches they consider under the label “CDM” (DCMs, 

Bayesian Networks, RSM, and AHM). An obvious practical consideration is that allowing an 

attribute to have a finer-grain scale rapidly increases the total number of latent classes. For 

example, assuming two attributes represented by latent variables with 4-point polytomous 
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scales (e.g., 0, 1, 2, 3) instead of dichotomous scales, the initial3 number of latent classes is 

16 rather than 4.  

Discrete vs continuous latent variables 

Most of the authors referenced so far draw a clear distinction between CDMs (multivariate 

discrete latent variable models) and other models that can be used for cognitive diagnostic 

assessment on the basis that CDMs use discrete and not continuous latent variables. For 

example, George and Robitzsch (2021, p. 108) describe multidimensional IRT (MIRT) as an 

“Instead of CDMs…” option, while Ravand and Baghaei (2020, p. 25) spell out that “DCMs 

are notably different from multidimensional IRT models in that the latent variables in DCMs 

are discrete or categorical”. Most emphatically of all, Rupp and Templin (2008b, pp. 226-

227) note that their definition of DCM “specifically excludes any multidimensional latent 

variable model with continuous latent variables as a DCM, which is a deliberate choice.”  

Writing more recently, however, Rupp (2023, p. 2), seems a little more vague about where 

the boundaries lie, and states that “It is best to think of DCMs as a family of models that 

allow analysts to represent different aspects of how item responses can be modeled as a 

function of the characteristics of learners/respondents and items/response patterns.” This 

more inclusive definition differs from recent common usage in the field (e.g., de la Torre & 

Minchen, 2019; Deonovic et al., 2019; George & Robitzsch, 2021; Sen & Cohen, 2021) and 

there is potential for ambiguity. As a result, the broader definition necessitates terms like 

“core models” or “traditional CDMs” (or simply lists of models), in order to draw the 

distinctions that authors in the field regularly refer to between CDMs and other cognitive 

diagnostic assessment approaches.  

A major upside of the more inclusive definition is neatly including “models that combine 

different ideas” (Rupp, 2023, p. 2), in particular, models that include a continuous/scale-

score dimension in addition to the discrete latent variables. Examples of these include the 

Reparameterised Unified Model (RUM) for binary data, which includes a continuous latent 

variable η “encapsulating the combined influence of any influential skills not built into the 

specified latent class space” (Stout et al., 2019, p. 50), previously discussed as the “fusion 

model” (Roussos et al., 2007); and the higher-order DINA model (HO-DINA) in which the 

(discrete) latent attributes are themselves modelled as “arising from a broadly defined latent 

trait resembling the 𝜃 of item response models” (de la Torre & Douglas, 2004).  

Literature review: major developments since 2007  

There has been a large amount of relevant research and development activity in cognitive 

diagnostic modelling since the era of Cognitive Diagnostic Assessment for Education 

(Leighton & Gierl, 2007a). The purpose of this review is to draw attention to major results 

and trends, rather than exhaustively listing developments. 

The topics addressed have not been given equal attention in the research literature. In 

particular, researchers have written a large amount about the statistical relationship of 

 

 

3 As alluded to by Zhang et al. (2023, p. 655), the total number of latent classes may be reduced if 
structural relationships between attributes (e.g., mastery of attribute A is a prerequisite for mastery of 
attribute B) mean that the classes defined by certain attribute combinations are not considered 
possible.  
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attributes to item responses4, and comparatively little about the other aspects involved in 

actually using CDMs to classify students (e.g., attribute pattern identifiability, methods of 

classification, test length requirement, and Q-matrix specification). 

Models and their categorisation 

A major area of CDM development in recent years has been categorisations and unifying 

frameworks that “subsume many (albeit technically still not all) models” (Rupp, 2023). 

Relatedly, research has also shown that many CDMs are reparameterisations of other 

models, all of which means that “the traditional distinctions between the DCMs are getting 

blurred” (Ravand & Baghaei, 2020, p. 29). Since many CDMs are still referred to by name, 

however (whether or not subsequently subsumed), Table 7 shows a summary of well-known 

CDMs and their classifications, for reference.  

The examples that Rupp (2023) lists as common CDM “frameworks” (e.g., G-DINA) are 

described by other authors as belonging to the category of “general” CDMs. Models in the 

general CDM category allow attributes to combine differently across different items. In 

particular, they allow attributes to combine in both compensatory and non-compensatory 

ways for different items within the same test. By contrast, “specific” (also known as “reduced” 

or “constrained”) CDMs are those models where only one type of relationship between 

attributes is possible within the assessment (whether that relationship between attributes is 

disjunctive, conjunctive, or additive). For example, the deterministic-input noisy-“and”-gate 

(DINA) model specifies a non-compensatory relationship between attributes (indicated by 

the “and”-gate in the name) for all items. That is, all attributes assessed by an item must be 

mastered in order to expect a correct response. By contrast, the deterministic-input noisy-

“or”-gate (DINO) model specifies a compensatory relationship between attributes.  

For both DINA and DINO, the “deterministic input” part of the name describes the fact that a 

test-taker’s attribute profile is deterministic of the latent response vector 𝜼𝑖 (for DINA, 𝜂𝑖𝑗 = 1 

wherever test-taker 𝑖 has mastered all the attributes assessed by item 𝑗 and 𝜂𝑖𝑗 = 0 

otherwise; for DINO, the latent response vector takes the value 1 wherever the test-taker 

has at least one of the attributes assessed by the item). This vector 𝜼𝑖 represents an ideal 

response pattern, and noise is only introduced for DINA and DINO by modelling item-level 

slip and guess parameters. For DINA, the final probability that test-taker 𝑖 with the attribute 

profile 𝜶𝑐 answers item 𝑗 correctly is given by: 

𝑃(𝑋𝑖𝑗 = 1|𝜶𝑐) = 𝑔
𝑗

1−𝜂𝑖𝑗(1 − 𝑠𝑗)
𝜂𝑖𝑗 (1) 

Where 𝑠𝑗 is the slip parameter giving the probability of an incorrect response despite mastery 

of the necessary attributes, and 𝑔𝑗 is the guess parameter giving the probability of a correct 

response despite not having mastered the sufficient attributes (𝑠𝑗 = 𝑃(𝑋𝑖𝑗 = 0|𝜂𝑖𝑗 = 1), and 

𝑔𝑗 = 𝑃(𝑋𝑖𝑗 = 1|𝜂𝑖𝑗 = 0)).  

 

 

4 This is a useful observation from the perspective of practical assessment developers (Dynamic 
Learning Maps Consortium, 2016, p. 165).  
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Arithmetic test example 

Table 3 shows the ideal response patterns for each attribute profile 𝜶𝑐 in the arithmetic test 

example, using the DINA model, and Table 4 shows the ideal response patterns under 

DINO, for comparison.   

Table 3: Ideal response patterns for example arithmetic test, DINA model. 

Attribute profile 
Item 1: 

3 + 5 = ? 
Item 2: 

6 – 2 = ? 
Item 3: 

2 + 3 – 1 = ? 
Item 4: 

9 – 5 + 2 = ? 

𝜶1 = [0,0] 0 0 0 0 

𝜶2 = [0,1] 0 1 0 0 

𝜶3 = [1,0] 1 0 0 0 

𝜶4 = [1,1] 1 1 1 1 

 

Table 4: Ideal response patterns for example arithmetic test, DINO model. 

Attribute profile 
Item 1: 

3 + 5 = ? 
Item 2: 

6 – 2 = ? 
Item 3: 

2 + 3 – 1 = ? 
Item 4: 

9 – 5 + 2 = ? 

𝜶1 = [0,0] 0 0 0 0 

𝜶2 = [0,1] 0 1 1 1 

𝜶3 = [1,0] 1 0 1 1 

𝜶4 = [1,1] 1 1 1 1 

 

After calibrating the mini arithmetic test using a suitable dataset of candidate responses, we 

would obtain slip and guess parameters for each item. Table 5 shows a set (based on 

dummy data) for the DINA model.  

Table 5: Slip and guess parameters for example arithmetic test, DINA model. 

Item 𝑠𝑗: slip 𝑔𝑗: guess 

Item 1: 3 + 5 = ? 0.10 0.15 

Item 2: 6 – 2 = ? 0.10 0.18 

Item 3: 2 + 3 – 1 = ? 0.12 0.13 

Item 4: 9 – 5 + 2 = ? 0.15 0.09 

 

The slip and guess parameters are used in equation (1) to calculate the probabilities of 

correct responses for each item 𝑗, for respondents in each attribute class (Table 6). For 

respondents in attribute class 𝑐, these probabilities are typically notated 𝜋𝑗𝑐. 

Table 6: Probabilities of correct responses for example arithmetic test, DINA model. 

Attribute profile 
Item 1: 

3 + 5 = ? 
Item 2: 

6 – 2 = ? 
Item 3: 

2 + 3 – 1 = ? 
Item 4: 

9 – 5 + 2 = ? 

𝜶1 = [0,0] 0.15 0.18 0.13 0.09 

𝜶2 = [0,1] 0.15 0.90 0.13 0.09 

𝜶3 = [1,0] 0.90 0.18 0.13 0.09 

𝜶4 = [1,1] 0.90 0.90 0.88 0.85 
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Many of the specific CDMs shown in Table 7 can be obtained by specifying constraints to 

one of the general CDMs. Ravand (2016) argues that if we consider the complexities 

(particularly, the actual cognitive processes underlying success on varied items) then 

allowing attributes to combine in different ways seems a far more plausible assumption than 

insisting on the same relationship throughout an assessment.  

Three of the general models shown in Table 7 have themselves been shown to be 

reparameterisations of each other (de la Torre, 2011; von Davier, 2014). These are the log-

linear CDM (Henson et al., 2009), the general diagnostic model (von Davier, 2005) and the 

generalised DINA model (de la Torre, 2011). The General Diagnostic Model (GDM) contains 

both the log-linear diagnostic model (LCDM) and G-DINA with logistic link function (von 

Davier, 2018, pp. 62-63).  

A further useful categorisation of CDMs is into hierarchical and non-hierarchical categories. 

In hierarchical CDMs, structural relationships among the attributes are modelled: for 

instance, mastery of attribute A being a pre-requisite for mastery of attribute B (meaning that 

latent classes in which B is mastered but not A can be ruled out a priori). von Davier and 

Haberman (2014) strongly criticised this use of the term “hierarchical” as it results in 

potential confusion between on the one hand CDMs that model structural relationships 

between attributes (as just defined), such as the “hierarchical DCM” (Templin & Bradshaw, 

2014) and on the other hand CDMs such as the “hierarchical GDM” (von Davier, 2007, 2010) 

that are hierarchical in the sense of multilevel models (i.e., the data is clustered, and the 

modelling takes account of this hierarchical structure). The usage that von Davier and 

Haberman (2014) objected to, however, remains standard in CDM contexts.  

 

 

 

 

Figure 3: Relationship of four important CDMs. Each model or model class is a restricted 

subset of the class above. 

 

These models are hierarchical 

in two different senses. 
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Table 7: Categorisation of well-known CDMs, adapted from Ravand and Baghaei (2020, p. 29). 

CDM 
category 

Attribute 
relationship(s) 

Abbreviation Name Authors  

Specific or 
constrained 

Disjunctive DINO Deterministic-input noisy-“or”-gate model Templin and Henson 
(2006) 

 

NIDO Noisy input, deterministic-“or”-gate model   

Conjunctive DINA Deterministic-input noisy-“and”-gate model Junker and Sijtsma 
(2001) 

 

NIDA Noisy input, deterministic-“and”-gate model DiBello et al. (1995); 
Hartz (2002) 

 

Additive ACDM Additive CDM de la Torre (2011)  

LLM Linear logistic model Maris (1999) equivalent to C-RUM 

C-RUM Compensatory reparameterised unified 
model 

DiBello et al. (1995); 
Hartz (2002) 

equivalent to LLM 

NC-RUM Noncompensatory reparameterised unified 
model 

Hartz (2002)  

Hierarchical HO-DINA Higher-order DINA de la Torre and 
Douglas (2004, 2008) 

 

General or 
saturated 

Disjunctive, 
conjunctive 
and additive 

GDM General diagnostic model von Davier (2005) de la Torre (2011) 
and von Davier 
(2014) showed these 
three models are 
equivalent 

LCDM Log-linear CDM Henson et al. (2009) 

G-DINA Generalized DINA de la Torre (2011) 

Hierarchical HDCM Hierarchical diagnostic classification model Templin and 
Bradshaw (2013) 

Is a constrained 
version of the LCDM  
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G-DINA 

The G-DINA model (or framework, in Rupp’s terms) has been particularly influential in recent 

years. As the name suggests, the G-DINA model is a generalised version of the 

deterministic-input noisy-“and”-gate (DINA) model (de la Torre, 2011), for dichotomous latent 

attributes, in which all interactions between attributes are considered. The G-DINA model is 

therefore a “saturated” CDM: if we assume that item 𝑘 requires the first 𝐷𝑘
∗ attributes (out of 

a possible set of 𝐷 attributes measured by the test), then there are 2𝐷𝑘
∗
 latent classes for 

item 𝑘, and G-DINA estimates all 2𝐷𝑘
∗
 parameters, as shown below.  

For each latent class (𝑙 = 1,… ,2𝐷𝑘
∗
) we can write the reduced attribute vector 𝒂𝑙𝑘

∗ : this is a 

vector of ones and zeroes with length 𝐷𝑘
∗ recording the attributes mastered by test-takers in 

that class. The item response function for the G-DINA model is then the following: 

𝑔[𝑃(𝑋𝑘 = 1|𝒂𝑙𝑘
∗ )] = 𝜑𝑘0 +∑𝜑𝑘𝑑𝑎𝑙𝑑

𝐷𝑘
∗

𝑑=1

+ ∑ ∑ 𝜑𝑘𝑑𝑑′𝑎𝑙𝑑𝑎𝑙𝑑′

𝐷𝑘
∗−1

𝑑=1

𝐷𝑘
∗

𝑑′=𝑑+1

+⋯+ 𝜑12…𝐷𝑘
∗ ∏𝑎𝑙𝑑

𝐷𝑘
∗

𝑑=1

(2) 

 

Where 𝑔 is a link function (identity, log or logit); 𝜑𝑘0 is the intercept; 𝜑𝑘𝑑 is the main effect 

from mastering attribute 𝜑𝑘𝑑; and the remaining 𝜑𝑘∙ parameters represent “all possible 

higher-order interaction effects, ranging from two-way to 𝐷𝑘
∗-way” (de la Torre & Minchen, 

2019, p. 157)5. 

When 𝑔 is the identity function, then the probability that test-takers with the attribute profile 

𝒂𝑙𝑘
∗  answer item 𝑘 correctly is just the sum of the effects due to attributes and their 

interactions. In this scenario, 𝜑𝑘0 represents the baseline probability of answering correctly 

when none of the attributes have been mastered; 𝜑𝑘𝑑 is the change in probability of correctly 

answering item 𝑘 from having mastered attribute 𝑑; and 𝜑12…𝐷𝑘
∗  is the change in the 

probability of answering correctly (over and above the main and lower-order interaction 

effects) due to mastery of all the required attributes (de la Torre, 2011, p. 181). 

When the link function 𝑔 is the logit function, the G-DINA item response function is 

equivalent to the LCDM (de la Torre & Minchen, 2019, p. 157). 

When all parameters except the intercept and highest-order interaction term are set to zero, 

the result is equivalent to the item response function for DINA: 

𝑔[𝑃(𝑋𝑘 = 1|𝒂𝑙𝑘
∗ )] = 𝜑𝑘0 + 𝜑12…𝐷𝑘

∗ ∏𝑎𝑙𝑑

𝐷𝑘
∗

𝑑=1

(3) 

Similarly, other well-known CDMs can be obtained through constraining the G-DINA 

function. 

 

 

5 The total number of 𝜑 parameters in equation (2) is 2𝐷𝑘
∗
, equal to the number of latent classes, 

because each 𝜑 parameter corresponds to a possible combination of the 𝐷𝑘
∗ dichotomous attributes.  
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There are also variants or extensions of G-DINA that have been designed to address 

specific contexts: 

• The polytomous G-DINA (pG-DINA) is a version that can handle polytomous 

attributes. Importantly, pG-DINA reduces the number of latent classes to 2𝐷𝑘
∗
 for item 

𝑘 (i.e., to the same number as in the usual G-DINA for dichotomous variables) by 

assuming that for each item and attribute, test-takers can be classified as “at or 

above” or “below” the level of mastery actually required for that item (de la Torre & 

Minchen, 2019, p. 158). 

• The sequential G-DINA (sG-DINA) for responses scored using ordered polytomous 

categories. 

• The continuous G-DINA (cG-DINA) for continuous responses. 

Model selection 

The consensus from more recent CDM work is that rather than selecting a CDM for an entire 

assessment, different CDMs should be allowed for different items within the same test (de la 

Torre & Minchen, 2019; Deonovic et al., 2019; Ravand & Robitzsch, 2018; Shafipoor et al., 

2021).  

Since it is difficult to determine which model should be chosen for each item in advance, the 

recommended strategy is to make it an empirical choice. de la Torre (2011) showed that 

many specific CDMs can be obtained by adding constraints to G-DINA, making the models 

nested. For this reason, a common route is to fit G-DINA, and then use the Wald test to 

compare the fit (at item level) with the fit of a number of constrained models, to determine 

the best CDM structure for each item. This approach is clearly explained by de la Torre and 

Minchen (2019, pp. 165-166), and an example of its use in an actual assessment 

development context is given by Deonovic et al. (2019, p. 445), in their presentation of the 

“Education Companion App” development by ACTNext, the innovation arm of education and 

assessment organisation ACT.  

More practical discussion of model selection, and how this interacts with sample size and 

context, can be found under research question 2 (requirements for valid reporting).  

Methods of classification 

As alluded to earlier, the details of classifying test-takers based on a CDM have received 

comparatively little attention in the literature, relative to parameterising the relationship 

between attributes and items.  

Rupp et al. (2010, p. 233) write that “the full process of estimating a DCM consists of 

estimating the item parameters, which statistically characterize the measurement properties 

of the diagnostic assessment, along with estimating the respondent parameters”. Rupp et al. 

clarify that the term “respondent parameters” is used to mean test-takers’ “statistically driven 

classification into one of the distinct latent classes of the DCM” or more simply “attribute 

profile” – that is, a vector of ones and zeroes indicating which attributes have been mastered 

(p. 232). At the same time, Rupp et al. write that “the respondent parameter estimates that 

DCMs provide are the probabilities that a respondent belongs to any of the C latent classes 

in the model” (p. 233). To be completely explicit, if there are 16 different latent classes then 

“there will be 16 different probabilities of latent class membership for each respondent with 
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the probabilities across all latent classes summing to 1” (p. 233). For the simple arithmetic 

test example, there are four different latent classes (attribute profiles), and so there will be 

four different probabilities of class membership for each test-taker (e.g., Table 8). 

Table 8: Probabilities of latent class membership for test-takers of example arithmetic test. 

Attribute profile Ali Benni Cami 

𝜶1 = [0,0] 0.03 0.26 0.91 

𝜶2 = [0,1] 0.07 0.73 0.06 

𝜶3 = [1,0] 0.04 0.01 0.03 

𝜶4 = [1,1] 0.86 0.00 0.00 

 1.00 1.00 1.00 

 

In practice, authors at times present both final latent class classifications and the 

probabilities underlying the classification as “the output” of a CDM. Reporting may consist of 

a single classification (into a latent class with a particular attribute profile, e.g., “Ali is 

classified as having attribute profile 𝜶4, mastery of both addition and subtraction”), or the 

probabilities associated with multiple latent classes, or the probabilities of mastery of 

individual attributes.  

Huebner and Wang (2011) give a particularly clear account of classification in CDMs. They 

write that test-takers are “often” classified either via maximum likelihood estimation (MLE), 

maximum a posteriori (MAP), or expected a posteriori (EAP) estimates, and the examples 

reviewed for this report consistently used one of these three methods (or a close variant). 

The MLE and MAP methods are parallel to those in IRT, but it is worth spelling out exactly 

what is meant in CDM contexts. 

The MLE classification is the latent class that maximises the likelihood of the test-taker’s 

observed responses (Huebner & Wang, 2011, p. 410). This involves: 

• calculating the likelihood of the observed responses 𝑿𝑖 given each possible latent 

class 𝜶𝑐 (i.e., each possible vector of ones and zeroes indicating mastery or non-

mastery of the K attributes), 

• assigning the test-taker 𝑖 the class �̂�𝑀𝐿𝐸 that maximises the likelihood, 

• more formally, we write: �̂�𝑀𝐿𝐸 = argmax
𝑐

{𝐿(𝑿𝑖|𝜶𝑐)}.  

The MAP classification is the latent class that maximises the posterior probability 𝑃(𝜶𝑐|𝑿𝑖) 

(p. 410). This Bayesian approach requires: 

• prior probabilities (e.g., proportions of test-takers with mastery of each attribute 

estimated from an earlier test administration), 

• using Bayes’s theorem, calculating the posterior probability 𝑃(𝜶𝑐|𝑿𝑖) for each class 

𝜶𝑐, 

• assigning test-taker 𝑖 the latent class that maximises this posterior probability, 

• more formally, �̂�𝑀𝐴𝑃 = argmax
𝑐

{𝑃(𝜶𝑐|𝑿𝑖)}. 

Since the MLE estimates are equivalent to MAP estimates with flat priors (as usual), 

Huebner and Wang (2011) reserve the term MAP for situations where the prior probabilities 

𝑃(𝜶𝑐) are non-equal for at least two values of 𝑐. 
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The EAP classification is generated slightly differently, and described as “in a sense” 

averaging over the posterior probabilities (Huebner & Wang, 2011, p. 411; Rupp et al., 2010, 

p. 239). The steps taken are: 

• calculating the posterior probabilities 𝑃(𝜶𝑐|𝑿𝑖) as in the MAP approach, 

• aggregating the posterior probabilities to find the marginal probability �̃�𝑘 for each 

attribute 𝑘 = 1,… , 𝐾 – this is the sum of the posterior probabilities corresponding to 

mastery of attribute 𝑘, 

• more formally, �̃�𝑘 = ∑ 𝑃(𝜶𝑐|𝑿𝑖)
𝐶
𝑐=1 𝐼(𝛼𝑐,𝑘 = 1) where 𝐼(𝛼𝑐,𝑘 = 1) is an indicator 

function with value 1 if element 𝑘 of the 𝑐th pattern is equal to 1, and zero otherwise, 

• from each probability �̃�𝑘, a binary classification of mastery or non-mastery for 

attribute 𝑘 is obtained, most commonly by rounding at 0.5. 

Arithmetic test example 

The (hypothetical) student Ali answered the first three arithmetic items correctly, but not the 

fourth, so we have response data 𝒙𝐴 = (1,1,1,0). For all classification methods, it is 

necessary to first calculate the likelihood of the observed responses 𝒙𝐴 for each of the four 

possible attribute profiles, that is, 𝑃(𝑿𝐴 = 𝒙𝐴|𝜶𝑐) for all classes 𝑐. These probabilities are 

calculated using the following6: 

𝑃(𝑿𝐴 = 𝒙𝐴|𝜶𝑐) =∏𝜋
𝑗𝑐

𝑥𝑗𝐴(1 − 𝜋𝑗𝑐)
1−𝑥𝑗𝐴

4

𝑗=1

(4) 

Where 𝜋𝑗𝑐 is the probability of a correct response to item 𝑗 for a respondent with attribute 

profile 𝜶𝑐 (these probabilities were calculated and shown in Table 6), and 𝑥𝑗𝐴 is the score Ali 

achieved on item 𝑗. The results are shown in the final column of Table 9, and the MLE 

estimate of Ali’s classification can be taken directly from this column; it is latent class or 

attribute profile 𝜶4, since this has the highest likelihood value.  

Table 9: Likelihood of Ali’s responses, arithmetic test example. 

 Ideal response patterns 

Observed responses from Ali 

𝑃(𝒙𝐴|𝜶𝑐) 1 1 1 0 

Likelihood of observed responses 

Attribute 
profile 

Item 1 Item 2 Item 3 Item 4 Item 1 Item 2 Item 3 Item 4 Product 

𝜶1 = [0,0] 0 0 0 0 0.15 0.18 0.13 0.91 0.003 

𝜶2 = [0,1] 0 1 0 0 0.15 0.90 0.13 0.91 0.016 

𝜶3 = [1,0] 1 0 0 0 0.90 0.18 0.13 0.91 0.019 

𝜶4 = [1,1] 1 1 1 1 0.90 0.90 0.88 0.15 0.107 

 

 

 

6 See Rupp et al. (2010, pp. 234-235). For a parallel extended example demonstrating respondent 
classification using the LCDM (instead of DINA), see Rupp et al. (2010, pp. 235-240). 
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Ali’s MAP classification is the latent class that maximises the posterior probability 𝑃(𝜶𝑐|𝒙𝐴). 

The posterior probability for each class is calculated using Bayes’ theorem: 

𝑃(𝜶𝑐|𝒙𝐴) =
𝑃(𝒙𝐴|𝜶𝑐)𝑃(𝜶𝑐)

𝑃(𝒙𝐴)
(5) 

This requires prior probabilities of latent class membership (𝑃(𝜶𝑐)). For this example, the 

prior probabilities are assumed to be those in Table 10: 

Table 10: Prior probabilities, arithmetic test example. 

Attribute 
profile 

Prior probabilities of class 
membership, 𝑃(𝜶𝑐) 

𝜶1 = [0,0] 0.35 

𝜶2 = [0,1] 0.20 

𝜶3 = [1,0] 0.10 

𝜶4 = [1,1] 0.35 

 

The denominator of equation 5 is the total probability of observing the responses 𝒙𝐴 

(considering all four possible attribute classes), which is calculated using equation 6: 

𝑃(𝑿𝐴 = 𝒙𝐴) =∑𝑃(𝜶𝑙)

4

𝑙=1

∏𝜋
𝑗𝑙

𝑥𝑗𝐴(1 − 𝜋𝑗𝑙)
1−𝑥𝑗𝐴

4

𝑗=1

(6) 

Combining equations 4, 5 and 6 gives the following final equation for the posterior 

probabilities: 

𝑃(𝜶𝑐|𝒙𝐴) =
𝑃(𝒙𝐴|𝜶𝑐)𝑃(𝜶𝑐)

𝑃(𝒙𝐴)
=

𝑃(𝜶𝑐)∏ 𝜋
𝑗𝑐

𝑥𝑗𝐴(1 − 𝜋𝑗𝑐)
1−𝑥𝑗𝐴4

𝑗=1

∑ 𝑃(𝜶𝑙)
4
𝑙=1 ∏ 𝜋

𝑗𝑙

𝑥𝑗𝐴(1 − 𝜋𝑗𝑙)
1−𝑥𝑗𝐴4

𝑗=1

(7) 

The calculations for Ali are shown in Table 11: the numerator of the fraction is in the 

penultimate column, and the denominator of the fraction is the sum (0.044). The MAP 

classification is the latent class that maximises the posterior probability 𝑃(𝜶𝑐|𝒙𝐴), so in this 

case it is the class corresponding to attribute profile 𝜶4, with posterior probability 0.86.  

Table 11: Calculation of posterior probabilities, arithmetic test example. 

 

Observed responses 
Product of 
response 
likelihoods 

Prior 
probabilitie

s 

Product of 
likelihoods 
with 𝑃(𝜶𝑐) 

Posterior 
probabilitie

s 

1 1 1 0 

Likelihood of observed 
responses 

Attribute 
profile 

Item 1 Item 2 Item 3 Item 4 𝑃(𝒙𝐴|𝜶𝑐) 𝑃(𝜶𝑐) 𝑃(𝒙𝐴|𝜶𝑐)𝑃(𝜶𝑐) 𝑃(𝜶𝑐|𝒙𝐴) 

𝜶1 = [0,0] 0.15 0.18 0.13 0.91 0.003 0.35 0.001 0.03 

𝜶2 = [0,1] 0.15 0.90 0.13 0.91 0.016 0.20 0.003 0.07 

𝜶3 = [1,0] 0.90 0.18 0.13 0.91 0.019 0.10 0.002 0.04 

𝜶4 = [1,1] 0.90 0.90 0.88 0.15 0.107 0.35 0.037 0.86 

     Total 1.00 0.044 1.00 
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Ali’s EAP classification is found by aggregating the posterior probabilities corresponding to 

mastery of each individual attribute. In this example, �̃�1 = 𝑃(𝜶3|𝒙𝐴) + 𝑃(𝜶4|𝒙𝐴) since 𝜶3 and 

𝜶4 are the two attribute profiles where addition is mastered, and �̃�2 = 𝑃(𝜶2|𝒙𝐴) + 𝑃(𝜶4|𝒙𝐴) 

since 𝜶2 and 𝜶4 are the two attribute profiles corresponding to mastery of subtraction. 

Hence �̃�1 = 0.04 + 0.86 = 0.90 and �̃�2 = 0.07 + 0.86 = 0.93. These values are rounded at 0.5 

and the estimated binary classification is 1 for both attributes. That is, we estimate that Ali 

has mastered both addition and subtraction.  

Comparing classification methods 

Rupp et al. (2010, p. 239) point out that “MAP estimates can sometimes be hard to interpret, 

because they do not provide direct probability estimates for each attribute separately.” 

Perhaps obviously, they also note that “if probabilities for individual attributes for individual 

respondents are desired” then EAP estimates will be more useful. Generating EAP 

estimates does however require an additional decision, specifically “which cutoff value 

should be used for deciding on the mastery status of an attribute to arrive at an overall 

classification of a respondent into a particular latent class” (p. 241). The cut-off generally 

chosen is 0.5 (i.e., classification as non-master for marginal probability values below 0.5 and 

master for values of at least 0.5), as reported by Huebner and Wang (2011), which is the 

statistically optimal7 cut-off (Bradshaw & Levy, 2019, p. 86). EAP classifications can however 

be generated based on other values, which may be more appropriate when the costs of 

over- and under- misclassification are not equal. In particular, “in a formative assessment 

context, it may be more costly to misclassify a non master as a master” (p. 86) since a 

student lacking mastery of a skill may miss out on necessary support. Following this logic, 

EAP classifications of mastery in Dynamic Learning Maps assessments are based on a 

marginal probability of at least 0.8 (Clark et al., 2017, p. 6; Dynamic Learning Maps 

Consortium, 2016, p. 170)8. 

Huebner and Wang (2011) carried out a simulation study to compare the classification 

accuracy of MLE/MAP and EAP when modelling using DINA. Besides the classification 

method, they varied the number of attributes measured, discrimination of individual items, 

and attribute mastery distribution in the test-taker population. Their results showed 

consistent results across all conditions (p. 417): 

• MLE/MAP classification resulted in the highest number of test-takers classified 

completely correctly (i.e., correct mastery/non-mastery recorded for all K attributes) 

• EAP classification resulted in the highest total number of attributes classified 

correctly and fewer severe misclassifications. 

Huebner and Wang (2011) conclude that the choice of method should be based on the 

purpose of the assessment (and classification), and that EAP seems “very suitable for 

proposed uses of CDMs in a practical setting” (p. 417). Their argument, which seems 

reasonable, is that “it may be desirable to classify ‘‘most’’ students ‘‘mostly’’ correctly rather 

 

 

7 In the sense that when we use 0.5 as the cut-off, this “assigns each examinee to their most likely 
class and will yield the fewest total errors in classifying examinees” (Bradshaw & Levy, 2019, p. 86). 
8 The DLM classifications in fact allocate mastery for marginal probability of at least 0.8, or, if the 
student has answered 80% of all items assessing the relevant attribute correctly (Dynamic Learning 
Maps Consortium, 2016, p. 170).  
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than to classify a maximum number of students exactly correctly while having a higher 

number of severe misclassifications” (p. 418).  

This review did not find further empirical comparisons of classification methods. More recent 

studies have commented that Bayesian methods “offer a natural framework” (Culpepper & 

Hudson, 2018, p. 100) and that classification is “generally done within a Bayesian 

framework” (Maas et al., 2022, p. 5). In terms of deciding between MAP and EAP, Maas et 

al. appeal directly to Huebner and Wang’s (2011) simulation results and arguments.  

Metrics for evaluation 

CDM implementations can be can be evaluated from different perspectives, depending on 

the weight given to model fit, classification consistency and accuracy, item discrimination, 

and the extent to which attribute difficulty aligns with substantive expectations (Ravand & 

Baghaei, 2020, p. 40). Rupp (2023, p. 10) lists the different categories of CDM statistics that 

can usually be obtained in fitting CDMs, and that can help evaluation (from various 

perspectives): 

1. Estimates of item difficulty and discrimination parameters.  

2. Estimates of differential item functioning statistics for particular subgroups.  

3. Estimates of attribute mastery probabilities for individual learners.  

4. Estimates of latent class membership probabilities for individual learners.  

5. Estimates of attribute mastery probabilities for a sample or subgroup.  

6. A distribution of learners in a sample across latent classes.  

7. Estimates of parameters for the effects of learner or item characteristics.  

8. Estimates of classification consistency for each latent class and attribute.  

9. Estimates of item-level, absolute, and relative fit of models. 

Measures of classification accuracy and classification consistency are the most commonly 

found examples of reliability-type measures. Sinharay and Johnson (2019) discuss these in 

some detail, and note that CDMs lacked these measures for a fairly long time. Sinharay and 

Johnson (2019) focus particularly on the following: 

• Measures of accuracy (𝑃𝑎) and consistency (𝑃𝑐) for an entire vector of attributes, as 

proposed by Cui et al. (2012). 𝑃𝑎 is defined very simply as “the probability of 

accurately classifying a randomly selected student based on his or her responses to 

test items” (p. 24), and 𝑃𝑐 as “the probability of classifying a randomly selected 

student consistently on two administrations or forms of the test” (p. 24). Cui et al. 

stress that it is vital to establish whether a CDM adequately fits observed student 

data before attempting to calculate 𝑃𝑎 or 𝑃𝑐, because their computations “rely heavily” 

on however student responses are modelled by the CDM (p. 24).  

• Measures for individual attributes, as proposed by Templin and Bradshaw (2013), 

Wang et al. (2015), Johnson and Sinharay (2018).  

Methods based on classification accuracy can have unsatisfactory results. Sinharay and 

Johnson (2019, p. 369) give as an example the case where 90% of the population is known 

to possess an attribute, and the CDM fitted “provides absolutely no information about the 

attribute” – but will still be accurate for 90% of the population. Alternative methods were 

proposed by Johnson and Sinharay (2018) include: 

• Youden’s statistic 



21 

 

• Goodman & Kruskal’s lambda 

• Cohen’s kappa 

• Tetrachoric correlation 

• Sensitivity (true positive rate) and specificity (true negative rate). 

Sinharay and Johnson (2019, p. 371) also mention the cdm.est.class.accuracy function in 

the R package CDM (George et al., 2016; Robitzsch et al., 2014). However, they note that at 

the time of writing there was no peer-reviewed publication supporting the methods that this 

package implements and that the function gave “substantially” different results from the 

indices proposed by Wang et al. (2015) and Johnson and Sinharay (2018).  

In simulation studies, the key metrics for CDM evaluation are item parameter recovery (i.e., 

successful retrieval of parameters used in the simulation of the data), and correct 

classification rate (i.e., test-takers assigned to the same class assumed in the simulation of 

their responses).  

Q-matrix development and refinement 

The Q-matrix is a two-dimensional matrix that records which combination of attributes is 

assessed by each item. In general terms, it specifies “the dependence structure between the 

observed variables and the latent attributes” (Ma et al., 2023, p. 175), and in educational 

measurement contexts, can be thought of as “a hypothesis about the required skills for 

getting each item right” (Ravand & Baghaei, 2020, p. 25). 

Traditionally, the Q-matrix was developed by domain experts, but the process is “quite 

challenging” (Wang et al., 2023, p. 11). Wang and colleagues point out that the attributes 

required in the fractions subtraction dataset introduced by Tatsuoka (2002) have “been 

debated for two decades, and no definitive conclusion has been agreed upon so far” (Wang 

et al., 2023, p. 11).  

Q-matrix mis-specification has long been understood to be a point of vulnerability for CDMs, 

with the potential for not just inefficient modelling but actively misleading results (de la Torre, 

2008; Rupp & Templin, 2008a). An important development in recent years has been the use 

of data-driven methods to validate or even construct the Q-matrix. de la Torre and Chiu 

(2016) presented a general method suitable for any specific model subsumed within the G-

DINA family. The method uses a measure called the G-DINA model discrimination index 

(GDI), which can be calculated for any q-vector proposed for item 𝑘. The GDI is equal to the 

variance (across attribute patterns) of the success probabilities for item 𝑘, given that q-

vector. A given q-vector is considered “appropriate” if it maximises the GDI, and among the 

appropriate q-vectors9, the one considered “correct” is the q-vector that specifies the lowest 

number of attributes for item 𝑘 (de la Torre & Minchen, 2019, pp. 163-164). de la Torre and 

Chiu (2016) also promoted the use of mesa plots to visualise the GDIs of multiple Q-matrix 

structures, to avoid reliance on a single GDI cut-off. Figure 4 shows an example of a mesa 

plot for item 1 (3 + 5 = ?) from the simple arithmetic test example. The y-axis plots the GDI 

 

 

9 Multiple q-vectors may result in the same maximal GDI – there is no expectation that the maximum 
level of variance of success probabilities (across attribute patterns) should be achieved uniquely by 
one q-vector.  
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or PVAF10 values for multiple q-vectors being considered for the item, in ascending order of 

GDI. The recommendation is to choose a q-vector from the region where the plot plateaus, 

that is, at the edge of the “mesa”. In the case of Figure 4, there is only one such q-vector, so 

the recommended choice would be [1,0], corresponding to mastery of single-digit arithmetic 

but non-mastery of single-digit subtraction. The mesa plot shows that the addition attribute 

contributed most of the variance of item success probabilities, and that mastery of 

subtraction did not contribute much. The mesa plot strongly suggests the choice of the q-

vector [1,0] for item 1, whereas a single cut-off value (e.g., 0.95, as shown by the dotted line) 

may have led to the choice of q-vector [1,1]. Deonovic et al. (2019) demonstrate how 

empirical Q-matrix validation was used in development of ACTNext’s Education Companion 

App, using a method based on de la Torre and Chiu (2016). 

 

Figure 4: Mesa plot for item 1, arithmetic test example. 

Using data-driven methods to actually learn or construct (not just validate or refine) the Q-

matrix, has been demonstrated by multiple authors, including Liu and Kang (2019).  

Wang et al. (2023) demonstrated a data-driven method for constructing a Q matrix for 

cognitive diagnostic assessment using a Bayesian network (BN – see p.29 onwards). This 

method depends on statistical independence testing of the BN structure, and for this reason, 

Wang and colleagues caution against relying “solely” on their data driven approach due to 

dependence on p-values as evidence. Their recommendation is that “the opinions of the 

domain experts are needed” (Wang et al., 2023, p. 11). 

 

 

10 Proportion of variance accounted for (PVAF) is defined as GDI as a proportion of the item’s 
maximum GDI; expressing the GDI in this way can be more useful when comparing q-vectors.   
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CDM applications 

CDMs can be applied for different purposes. The application generally considered the “true” 

purpose of CDMs is the development of new tests for diagnostic purposes, where the aim is 

to gather fine-grained information about the strengths and weaknesses of the test takers, in 

order to support their further development – that is, with the goal of informing action (Ravand 

& Baghaei, 2020, p. 27). CDMs may also be used to extract diagnostic information from 

existing assessments (not necessarily designed to be cognitive diagnostic assessments at 

all), a process called “retrofitting”. Investigation of the structure of educational constructs can 

take place within both “true” CDM studies and retrofitting studies. CDMs are generally 

regarded as confirmatory, but Mislevy and Bolsinova (2021, p. 103) note that CDMs can be 

used in both confirmatory and exploratory psychometric modelling when the Q-matrix is 

estimated from data.  

Something that does not appear to have developed over recent years is widespread use of 

CDMs in assessment practice. Bradshaw and Levy stated in 2019 that CDMs were “only 

recently being used in operational settings to provide results to examinees and other 

stakeholders” (Bradshaw & Levy, 2019, p. 79). Ravand and Baghaei, similarly, noted around 

the same time that “Although DCMs have been around for more than a decade, they have 

rarely been applied to provide feedback to tailor instruction to the needs of learners” (2020, 

p. 26). In Ravand and Baghaei’s view, the stark imbalance in the academic literature on 

CDMs11 reflects the trends in their usage. That is, CDMs are far more likely to be used in 

methodological research than for actual diagnostic assessment. Further, despite the serious 

objections to retrofitting (described as “the-measure-of-last-resort” (p. 27); see also 

Bradshaw et al. (2014); Rupp and Templin (2009)), examples of retrofitting outnumbered 

“true” CDM applications four to one. More recently, in a 2023 NCME webinar on CDMs, 

Matthew Madison appeared to agree that examples were still sparse: “DCMs are still new, 

so we don't have many [examples]” (Madison, 2023). 

Zhang et al. (2023) note that besides cognitive diagnostic assessments and retrofitting 

studies, cognitive diagnostic modelling can be integrated into a number of products or 

technologies in digital learning settings: 

1. Cognitive diagnostic computerized adaptive testing. 

2. Longitudinal models for learning, e.g., to track learning over a course. 

3. Recommendation systems for adaptive learning, see for example Chen et al. (2018). 

Commercial assessment products using CDMs at scale 

1. Navvy assessments – created by Dr Laine Bradshaw, then acquired by Pearson in 

2022. The Navvy assessments are pre-set formative assessments, designed to 

provide reliable diagnostic information on mastery of individual learning objectives 

(“standards”). The assessments are short (6-8 items per standard) and designed to 

 

 

11 “Googling the two most popular labels of cognitive diagnostic models (CDMs) and DCMs (the label 
preferred in the current study) in early 2018 returned over 240 hits, over 95% of which were 
methodological, about 4% were retrofitting, and less than 1% were true DCM studies.” (Ravand & 
Baghaei, 2020, p. 27) 
 

https://www.pearsonassessments.com/large-scale-assessments/district-assessment/navvy-assessment.html
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be convenient for regular classroom use, so that a teacher can regularly check and 

diagnose understanding. The key facts are outlined in a white paper by Bradshaw 

(2022). The publicly available documentation on Navvy assessments does not 

specify what form of cognitive diagnostic modelling they use, but in earlier projects 

Bradshaw has applied the LCDM (Bradshaw et al., 2014; Madison & Bradshaw, 

2018). 

2. Dynamic Learning Maps (DLM) assessments – developed by Dr Neal Kingston and 

colleagues at the ATLAS centre, University of Kansas. These assessments are again 

“true” CDM applications: the DLM assessments measure what students know and 

can do in terms of specific elements of knowledge, skills and understanding, which 

are linked to college and career readiness standards. The system is designed for 

students with serious cognitive difficulties, and the assessments are delivered in 

short “testlets” consisting of “an unscored engagement activity and three to nine 

items” (Karvonen et al., 2020). Extensive details are available in Clark et al. (2017) 

and the DLM technical manuals (e.g., Dynamic Learning Maps Consortium, 2016). 

Other assessment development examples 

1. The Education Companion App (ECA) developed by ACTNext, as reported by 

Deonovic et al. (2019). The goal of the ECA app development was to make use of 

the vast amount of learner data held by ACT across tests and platforms, for example 

to recommend learning resources for a student to practice a skill they had not yet 

mastered. Student proficiency was modelled (from existing ACT test data) using the 

Linear Logistic Test Model (LLTM), an extension of the Rasch model incorporating a 

Q-matrix and skill easiness parameters (in addition to unidimensional student ability 

𝜃 and item difficulties). The Q matrices and LLTM approach was then validated using 

an “intensive analysis of the data using the standard CDM approach” (p. 449). 

Further details can be found in Appendix B. 

2. Wang et al. (2023) developed a cognitive diagnostic assessment for the concept of 

buoyancy in physics. As noted earlier, they demonstrated a data-driven approach for 

developing and improving the Q-matrix via statistical independence testing of 

Bayesian networks (BNs). They then compared classification using the original BN, a 

3-level hierarchical BN, G-DINA and the HDCM. 

Using CDMs to investigate the structure of constructs 

1. Comparing the fit of G-DINA with specific CDMs on a specially designed cognitive 

assessment in English as a second language (Shafipoor et al., 2021). The study 

concluded that “relationships among the attributes of grammar and vocabulary are 

not ‘either-or’ compensatory or noncompensatory but a combination of both” (p. 1), 

and that model choice at item-level rather than test-level is therefore preferable.  

2. Retrofitting different implementations of the DINA model to PIRLS data to empirically 

validate assumptions about reading (George & Robitzsch, 2021). 

3. Retrofitting G-DINA to TIMSS data in order to provide more informative feedback 

(Delafontaine et al., 2022). The results showed that using country-specific Q-

matrices led to better fit compared to a single (expert-designed) universal Q matrix.  

4. Retrofitting CDMs to PISA data in order to investigate trajectories of learning in 

statistics, across 14 countries (Jia et al., 2021). Six models were compared: DINO, 

DINA, GDINA, ACDM, LLM, RRUM and LCDM. 

https://dynamiclearningmaps.org/
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5. A similar retrofitting study investigating mathematics learning across 10 countries, 

again using PISA data (Wu et al., 2020).  

6. Retrofitting CDMs to investigate the structure of construct measured by the 

Singapore/Cambridge O Level English listening test (Aryadoust, 2018). The study 

fitted five different CDMs: DINA, DINO, HO-DINA, G-DINA and RRUM, with a notably 

small sample size (n=205). Q-matrix development was informed by the theoretical 

framework of the study (i.e., expert domain knowledge), a think-aloud study with 

participating students, and an eye-tracking study.  

7. Retrofitting G-DINA to IELTS data to investigate the reading construct (Mirzaei et al., 

2020). 

Relevant non-CDM topics  

Besides research and development in CDMs, there have been significant developments in 

recent years in other areas with high relevance to CDMs. In particular, it is worth outlining 

some non-parametric approaches to diagnostic classification, and some important 

connections between CDMs and network models.  

Nonparametric approaches 

CDMs – the mainstream approach to diagnostic classification – require estimation of model 

parameters. Nonparametric methods for cognitive diagnosis were developed originally by 

researchers seeking to circumvent technical difficulties in parameter estimation: Chiu and 

Köhn (2019) note that in the early days of CDMs, publicly available implementations of 

estimation algorithms were “scarce” and computationally costly (and sometimes not actually 

feasible). The main relevance of nonparametric approaches today, however, lies in their 

suitability for small sample sizes. 

Nonparametric approaches can broadly be grouped into clustering and classification 

methods. For the context of cognitive diagnosis, clustering approaches aggregate each test-

taker’s responses into sum scores for each attribute (using the Q-matrix), and use these to 

identify clusters via a clustering algorithm such as K-means. The obvious drawback of 

clustering for cognitive diagnosis is that clustering is not a method of classification; it 

“identifies groups that do not come with inherent interpretations” (Zhang et al., 2023, p. 661). 

The clusters need to be labelled before they can be of use; specifically, “their underlying 

attribute vectors must be reconstructed from the chosen input data” (Chiu & Köhn, 2019, p. 

117). While methods to do this have been developed, they are not without risks or 

complications (pp. 117-118).    

True nonparametric classification methods, unlike clustering approaches, aim (like CDMs) to 

classify test-takers into predefined classes based on their mastery of attributes. The 

nonparametric classification (NPC) method developed by Chiu and Douglas (2013) is an 

important example, which can be used with samples of any size whatsoever. The core idea 

of the NPC is simple: to classify a test-taker to whatever class minimises the distance 

between the test-taker’s observed response vector 𝒙𝑖 and the ideal response vector 𝜼𝑐 for 

that class. More formally, 

�̂�𝑖 = arg min
𝑐∈{1,…𝐶}

𝑑(𝒙𝑖, 𝜼𝑐) (8) 
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The usual measure of distance 𝑑 is the Hamming distance, which counts the number of 

disagreements between the observed and ideal response vectors. Another option is to 

weight the Hamming distance according to the inverse of the item’s response variability (so 

that a disagreement ‘counts’ more where the item variance was low). An advantage of the 

weighted approach is that it reduces the number of ties.  

Table 12 shows how the NPC approach would be applied to Ali’s responses from the simple 

arithmetic test example. In this case, there are no ties, and the NPC approach would classify 

Ali as having attribute profile 𝜶4, that is, mastery of both addition and subtraction.  

Table 12: Observed and ideal response patterns, arithmetic test example. 

 

Observed response pattern from Ali 

Number of disagreements 
between observed and 

ideal 

1 1 1 0 

Ideal response patterns (DINA) 

Attribute 
profile 

Item 1 Item 2 Item 3 Item 4 

𝜶1 = [0,0] 0 0 0 0 3 

𝜶2 = [0,1] 0 1 0 0 2 

𝜶3 = [1,0] 1 0 0 0 2 

𝜶4 = [1,1] 1 1 1 1 1 

  

The ideal response vector 𝜼𝑐 is straightforward to define for the entirely conjunctive DINA 

model, and the entirely disjunctive DINO. Wang and Douglas (2015) showed that the NPC 

approach resulted in consistent estimation for several other conjunctive models, while Chiu 

et al. (2018) introduced a generalized NPC (GNPC) approach suitable for any data-

generating model. The GNPC achieves this by creating an ideal response vector that is a 

weighted combination of the purely conjunctive and disjunctive ideal response vectors. The 

weights are estimated from the data after first using some initial estimate of test-taker 

classification; Zhang et al. (2023, p. 662) suggest classification based on using the entirely 

conjunctive ideal response vector for this purpose.  

Chiu and Douglas (2013) compared classification via parametric and nonparametric 

approaches, for a variety of conditions, using both simulated and actual test-taker data (the 

frequently analysed fractions dataset from Tatsuoka (2002)). Overall, their results showed 

that in conditions where it was possible to estimate the parametric model and the data-

generating model was known, the model-based classification was more efficient and more 

reliable. However, the nonparametric approach was and is viable for a much wider range of 

conditions. For the fractions dataset specifically (N=536, with 20 items and 8 parameters), 

Chiu and Douglas (2013) compared maximum-likelihood estimation using parameters 

obtained from HO-DINA, with nonparametric classification using the weighted Hamming 

distance. The results showed that around 45% of test-takers were classified into the same 

class under both methods, but 87% of individual attributes of test-takers were classified the 

same way (p. 247).   

A separate nonparametric approach to mention is the use of artificial neural networks 

(ANNs), which can be applied for the purposes of cognitive diagnosis in both supervised and 

unsupervised forms (Cui et al., 2016; Paulsen & Valdivia, 2021). Cui et al. explain that the 
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most commonly used supervised neural network model, the multilayer perceptron (MLP), 

functions in statistical terms like a non-linear multivariate regression model (Cui et al., 2016, 

pp. 1066-1067). The MLP requires an observed input layer (akin to independent variables), 

and an observed output layer (akin to dependent variables). In between is a hidden layer of 

network nodes, and the ANN is “trained” by repeatedly connecting the input and output 

layers until it can predict output layer values with the desired level of precision12. For the 

purposes of nonparametric cognitive diagnosis, the different possible ideal response vectors 

are set as the input layer, and the output layer consists of attribute profiles, meaning that an 

ANN can be estimated without any observed data at all (Paulsen & Valdivia, 2021, p. 921). 

This is a useful feature when working with small samples, but a downside is that the ANN 

does not attempt to account for any deviations from ideal response vectors. Consequently, 

this approach does not tend to perform well when actual response data deviates frequently 

from ideal response behaviour (Cui et al., 2016, p. 1080). 

Network psychometrics 

The field of network psychometrics takes a fundamentally different approach to studying and 

understanding observed phenomena in psychology, in comparison with a traditional latent 

variable or common-cause framework (Marsman et al., 2018). Specifically, “Instead of 

attributing the relationships between observed variables as arising from the underlying latent 

variable related to all the observed variables, the set of observed variables is seen as a 

network with causal interactions among these variables” (Mislevy & Bolsinova, 2021, p. 

103). In practice, this is achieved by using network models that make use of (mathematical) 

graph structures13: these network models “view observed variables as nodes and the 

strength of conditional association between two variables after controlling for all other 

variables as edges” (p. 103). In network psychometrics, the motivation behind such 

modelling is “an attempt to map out the complex interplay between psychological, biological, 

sociological, and other components” (p. 103). Marsman et al. (2018) illustrate this with an 

example from psychopathology, showing the modelling of a set of symptoms (e.g., irritation, 

sleep problems, depressed mood) associated with major depression (MD) and generalized 

anxiety disorder (GAD). Modelling these symptoms under a traditional common cause model 

posits that these symptoms develop as a consequence of underlying illness represented by 

the latent variables MD and GAD). By contrast, “the direct interaction model suggests that a 

symptom develops under the influence of other symptoms or (observable) external  

factors” (p. 18). 

One important category of network models is pairwise Markov random field (MRF) models. 

These include Gaussian graphical models (GGMs), also known as partial correlation 

networks, which are the most commonly used network models in network psychometrics, 

and Ising models, which are used to estimate pairwise interactions between binary variables 

(Briganti et al., 2022; Marsman et al., 2018). The graph structures of pairwise MRF models 

 

 

12 Cui et al. provide much more detail on ANNs and the iterative process of training. To be more 
precise about the goal of training, “To predict the values of the output nodes for the MLP, the 
unknown parameters that must be estimated are two sets of connections weights, one linking input 
nodes to hidden nodes and the other linking hidden nodes to output nodes.” (Cui et al., 2016, p. 1068) 
13 A mathematical graph is a finite set of elements (often called nodes) accompanied by a set of 
ordered pairs of nodes (usually called edges). 
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are undirected14, and may contain cyclic paths. Undirected graph models such as GGMs are 

widely applied in part because of the relatively few assumptions required. However, because 

the edges linking nodes are undirected, the scope for causal interpretations is limited 

(Briganti et al., 2022).  

CDMs and network models 

von Davier (2018, pp. 66-67) links CDMs and network models via the log-linear skills model 

class presented by von Davier and Yamamoto (2004). This log-linear skills model can be 

used to model observed or latent variables, and when used to model binary or ordinal 

attributes, it can be re-written as a log-linear model with main effects and first-order 

interactions. When applied to binary response variables, it is equivalent to the Ising model. 

This is the network psychometrics connection alluded to by von Davier and Lee (2019a, p. 3) 

in their introduction to the Handbook of Diagnostic Classification Models. Figure 5 shows a 

schematic map of how the Ising model forms a point of connection between network 

psychometrics, CDMs and IRT. 

The LCDM is an extension of the log-linear model, and further details on this relationship 

can be found in Henson et al. (2009, pp. 196-198). The details of the relationship of the Ising 

model to IRT are set out by Marsman et al. (2018). Marsman and colleagues in fact present 

far more than this, in a systematic account relating network models to IRT: “even though the 

conceptual framework that motivates the statistical representation in a psychometric model 

may be strikingly different for network models and latent variable models, the network 

models and latent variable models turn out to be strongly related; so strongly, in fact, that we 

are able to establish a general correspondence between the model representations and, in 

certain cases, full statistical equivalence.” (Marsman et al., 2018, p. 16) 

 

 

 

14 An undirected graph is one in which the edges linking pairs of nodes have no order: the two nodes 
connected have equal ‘status’ (in particular, there is no start/end or parent/child hierarchy in the pair).  
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Figure 5: Linking CDMs, IRT and network models – see also Appendix C, Figure 7. 

 

Bayesian networks 

Bayesian inference networks, also known as Bayesian networks or Bayes nets (BN) for 

short, are a different important category of network model15. A Bayes net consists of “a joint 

probability distribution over a collection of discrete16 variables” that can be represented as an 

acyclic directed graph17 with a corresponding set of conditional probability distributions 

(Mislevy & Bolsinova, 2021, p. 94). Bayesian networks can be used in contexts like 

psychopathology where network psychometrics developed, but are less commonly found 

there than pairwise MRF models. Since all BN edges are directed, BNs are better placed for 

modelling causal relationships, but require numerous strong assumptions (see Briganti et al., 

2022, pp. 1-2; McNally, 2023, pp. 2-3).  

In the educational measurement context, BNs are a useful and flexible alternative approach 

to assessing sub-domains, to be considered instead of multidimensional IRT or CDMs 

 

 

15 Briganti et al. (2022) highlight an important possible confusion to avoid: “BNs [Bayesian Networks] 
should not be confused with pairwise Markov random fields estimated with Bayesian methods” (p. 1). 
By definition, the graph structures of BNs are different to the graph structures of pairwise MRFs. 
16 Culbertson (2016, p. 6) notes that: “…most applications of BN have used discrete latent variables. 
However, there is no theoretical restriction to discrete variables; and advances in computing power 
and new computational algorithms … render BN with continuous latent variables more feasible.”  
17 A directed acyclic graph (DAG) is a finite set of nodes accompanied by a set of directed edges (i.e., 
a set of ordered pairs of nodes), in which there exist no cyclic paths – that is, it is not possible to find a 
closed loop of directed edges. 
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(Culbertson, 2016; Wang et al., 2023). Culbertson notes that although psychometricians in 

educational assessment have paid relatively little attention to BNs, in the artificial intelligence 

field BNs have been used “extensively” in intelligent tutoring systems (ITS) to model student 

knowledge18 (2016, p. 4).  

Culbertson (2016) emphasises that Bayesian networks “are not a type of model, per se” but 

rather, “represent a framework or approach to model building”. Capitalising on the 

relationship between a graph representation and the complex joint probability distribution 

makes BNs “a convenient and intuitive” way to model such distributions (p. 4). The 

“convenience” aspect stems from the fact that nodes are conditionally independent given the 

separating set19. The conditional independencies implied by the BN graph structure then 

simplify considerably (via the rules of probability), with the result that “complex relationships 

between many variables can be described through conditional relationships between much 

smaller subsets of variables, which may be read directly from the graph” (see explanation by 

Culbertson, 2016, pp. 4-5).  

Bayes nets are highly flexible: they can model both latent and observed variables, they are 

well-suited to modular model development, and a node’s conditional distribution can be 

specified using “any” probability distribution (Culbertson, 2016, p. 6). Within an ITS, it is 

usual for both latent attributes and items to be represented as nodes, with the latent 

attributes “conventionally represented as hidden nodes, and test items as observed nodes” 

(Hu & Templin, 2020, pp. 303-304). In educational measurement contexts generally, 

including ITS, it is usual for the directed graph edges to flow from the latent attribute nodes 

to the test item nodes, that is, for the conditional probability distributions of observed 

variables to be specified in terms of latent attribute “parent” nodes. It is also permissible, 

however, to have edges between latent attribute nodes and between test item nodes 

(Almond & Zapata-Rivera, 2019, p. 83; Culbertson, 2016, p. 5). The probabilities associated 

with each possible value of an observed variable node in educational measurement BNs are 

commonly generated by IRT models or CDMs – on which basis, Culbertson points out that 

“traditional IRT and DCM can be viewed as special cases of BN with a single (potentially 

multi-dimensional) hidden node” (Culbertson, 2016, p. 6).  

A sense in which BNs are less flexible than other approaches to cognitive assessment is 

that the between-attribute structure is pre-specified: “unlike in DCMs and MIRT models, 

which often use an unstructured model for the structural model (i.e., the relationship among 

latent variables), BayesNets are predominantly (but not exclusively) built upon prespecified 

attribute hierarchies expressed as a series of marginal and conditional distributions” (Hu & 

Templin, 2020, p. 304). This point is also made by Culbertson (2016). Almond and Zapata-

 

 

18 In ITS contexts, this is referred to as the “student model”, as in the original Evidence Centred 
Design formulation (more recent ECD iterations refer to the “proficiency model”). The term “student 
model” refers to “the detailed tracking of the student on their knowledge on a topic, their skills, and 
various psychological attributes, including personality, motivation, and emotions” (Graesser et al., 
2018, p. 249). The “primary goal” of a student model is “to take the data on the previous performance 
of a student and use it to provide an estimate of knowledge and predictions of future performance. 
Specifically, for a student s and an item i, a model predicts the probability the student s will answer 
the item i correctly.” (Pelánek, 2018, p. 210) 
19 See Almond p. 84 for details of when nodes in a directed graph are separated.  
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Rivera (2019, p. 88) are unequivocal: “the Bayes net requires the relationship among the 

proficiency variables (attributes) to be explicitly stated and modeled”.  

CDMs and Bayesian networks 

Bayesian network models are closely connected to cognitive diagnostic models. Almond et 

al. (2015) show in detail how model structures known by CDM names (e.g., DINA, DINO – 

pp. 250-254) can be expressed as BNs; Mislevy and Bolsinova (2021) note that this is true 

for many CDMs (and latent class models in general). 

Hu and Templin (2020) showed that Bayesian networks “can be parameterized to provide 

proficiency models that are equivalent to the saturated LCDM and to the HDCM” (p. 304) – 

in other words, that it is possible to formulate a “saturated proficiency model under [a] 

BayesNets framework”, and that this is equivalent to a saturated model under LCDM (p. 

305). Hu and Templin’s motivation for looking at the saturated BN model was both to 

compare it to saturated DCMs, and to look at comparisons with the other possible (not 

saturated) BN proficiency models nested within the saturated BN model (pp. 304-305). 

The Dynamic Learning Maps (DLM) technical documentation gives an insight into what the 

relationship between CDMs and BNs can offer assessment developers. Firstly, the technical 

documentation states explicitly that DLM assessments were informed by research and 

development from both CDM and BN traditions. In fact, not only the ideas but the 

representations and language used are intermixed by the DLM developers: “Since the latent 

variables (called nodes) from Bayesian inference networks and the latent variables (called 

attributes) from diagnostic classification models are mathematically equivalent, this 

document blends research and terminology from the two measurement paradigms from 

which such methods have evolved” (Dynamic Learning Maps Consortium, 2016, pp. 159-

160, emphasis in original). 

The cognitive diagnostic assessment developed by Wang et al. (2023), assessing buoyancy, 

demonstrated ways in which the flexibility of the BN structure allowed the researchers to 

combine aspects from multiple CDMs. Specifically, the final 3-level hierarchical BN that the 

researchers developed (which outperformed the original BN, G-DINA and HDCM models in 

classification) incorporated a high-level proficiency variable such as can be modelled in the 

HO-DINA model (which cannot model hierarchical attribute relationships) and the 

hierarchical relationships that can be modelled by the HDCM (which cannot incorporate a 

high-level proficiency variable that’s not present in the Q-matrix).  

In assessment contexts that require real-time scoring - such as an ITS or adaptive testing 

system – Almond and Zapata-Rivera (2019, p. 89) make the case for implementing CDMs 

via BNs more generally, since it makes “scoring” individual students (and hence classifying 
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them, or reporting probabilities of mastery) straightforward20. Specifically, they argue that 

“first translating the estimated [CDM] models to a Bayes net and then using the Bayes net 

for scoring is an attractive method for using those models in embedded applications” (p. 89). 

Why are CDMs not used more frequently? 

Ravand and Baghaei (2020) attribute the paucity of operational CDM applications to three 

essentially practical factors: 

1. The fact that CDMs have a “lack of accessibility to a broad audience interested in 

their application” (p. 26). 

2. The fact that the field is rapidly developing, which makes it difficult and time-

consuming for practitioners to keep abreast of changes and new developments. 

3. The remaining presence (despite extensive research and development activity) of 

practical barriers, most notably sample size requirements. 

Supporting the final point, Zhang et al. (2023, p. 670) emphasise that “Real-world 

implementations of cognitive diagnostic testing often face a difficult trade-off between 

statistical (or psychometric) soundness and practical feasibility”, in particular, because 

reliable measurement often requires repeated measures, and parameter identifiability 

requires that attributes are assessed (at least once) in isolation. The practical requirements 

for using CDMs are described in research question 2 (page 36).  

Principled objections 

In contrast to these practical concerns, von Davier (2018) develops an account (“Diagnosing 

Diagnostic Models”) that questions the value of CDMs at a more fundamental level, and, in 

particular, questions whether they have any value over and above IRT models and network 

psychometrics. The strongest point admitted in favour of CDMs is that they are conceptually 

attractive: “discrete skills representing nuggets of knowledge, success in learning specific 

content or particular fine-grained proficiencies are a natural representation of hypothesized 

probabilistic causes … of observed behavior” (von Davier, 2018, p. 68).  

von Davier’s core argument against CDMs is that “Most diagnostic models assume that 

observed behaviors can be explained by a multidimensional skill attribute vector that is 

binary … this assumption cannot be made without being challenged” (p. 68). The article is 

structured around making this challenge in some detail, specifically, addressing four “implicit 

claims or assumptions” many diagnostic models have made (p. 59): 

1. Skills can be represented as latent structures with two possible outcomes. 

2. Multiple skill attributes are needed to explain the observed response data. 

 

 

20 “A completely specified Bayesian network (one whose conditional probability tables are all known) 
is a description of the joint probability of the latent and observable variables for the population of 
interest. Scoring a single student is straightforward and the required operations are supported by 
almost all Bayesian network software. First, a student specific copy of the network is made. Next, all 
of the observed variables are instantiated (set) to their observed values. Then a simple message 
passing algorithm is used to update the marginal probabilities for all nodes in the network. Statistics of 
these marginal probability distributions can be reported as scores.” (Almond & Zapata-Rivera, 2019, 
p. 89) 
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3. The exact set of required skill attributes can be determined for each item. 

4. The rate-response function of how skill attributes add up, or interact, or both, can be 

determined.  

The general CDMs – which potentially include all possible attribute interactions – are highly 

parameterised models. There is an obvious risk of overfitting (e.g., an LCDM with 5 skills 

may require up to 32 parameters per item), and also that parameters will lack identifiability21 

(p. 61). With regard to CDMs involving attribute hierarchies, von Davier and Haberman 

(2014) proved that hierarchically related binary attributes can be replaced by a polytomous 

latent variable (because the allowable attribute patterns correspond to a perfect Guttman 

pattern, meaning “which” attributes is not informative, only “how many”). For these 

scenarios, von Davier argues that “using multiple attributes only obscures the validity of a 

much simpler model” (2018, p. 65). 

It is essential to at least consider ordinal as well as binary variables, or compare binary-

variable to continuous-variable models, to test whether there is actually support for the 

binary variable assumption. Studies that have carried out this kind of comparison show in 

many cases that alternative conceptions (e.g., a unidimensional IRT model) explain the 

observed responses equally well (or better). Hence, “instead of assuming many binary skills 

in a latent variable model, fewer ordinal or even one continuous or ordinal skill can 

potentially be assumed without loss of accuracy of model predictions” (von Davier, 2018, pp. 

66-67).  

von Davier (2018) notes that modelling associations between observed variables can be 

done without assuming latent variables at all (using a log-linear skills model or network 

psychometrics approach), but offers a caution about the kinds of conclusions this could lead 

to. Specifically, “assuming that there are no underlying causes (latent variables) and that the 

observed indicators are all that is needed for a comprehensive explanation could lead to 

simplified explanation patterns that only look at what we can easily observe, assuming that 

all we observed is all there is” (von Davier, 2018, p. 68). 

In the introduction to the Handbook of Diagnostic Classification Models von Davier and Lee 

(2019b) offer a similar overall verdict with respect to CDMs: “In many cases, latent class 

analysis, customary IRT, and other latent variable models can directly be considered 

alternatives to diagnostic models, as these are often more parsimonious (in the case of IRT) 

 

 

21 Mathematically, we mean that it is not possible to satisfactorily estimate the model parameters, 
because the likelihood of the observed data under the model is the same for two or more different 
sets of parameters. von Davier gives an illustration (pp. 64-65) of this occurrence in hierarchical 
CDMs where attributes are related in a so-called “linear hierarchy”. In this example "the interaction of 
these two skills cannot be distinguished from the additive effect of the two hierarchically ordered 
attributes, because the higher order attribute can never be mastered by a person not having mastered 
the lower order attribute" (von Davier, 2018, p. 65). Marsman and colleagues make some helpful 
comments, noting in particular that “mapping from statistical association structure to generating 
causal structure is typically one-to-many, which means that many different underlying causal models 
can generate the same set of statistical relations” (Marsman et al., 2018, p. 26). Their framing 
emphasises the un-remarkableness of the consequences: “Because each of these models implies the 
same probability distribution for the data, one cannot conclude from the fit of the statistical model that 
the conceptual model is accurate. Thus, causal interpretations do not follow from the statistical model 
alone, as indeed they never do.”  
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or do not make as strong (parametric) assumptions about the latent structures and how 

these structures are related to the conditional response probabilities in the levels of the 

latent variables.” As a result, von Davier and Lee recommend that researchers always 

compare their results from more complex modelling approaches (CDMs) to a baseline of 

more standard approaches: “customary standard examples of latent variable models such 

as IRT or LCA”. This will enable researchers to determine whether there is in fact added 

value from the increased model complexity, either in terms of better model fit to the data, or 

in terms of “more useful derived quantities such as estimated mastery states” (von Davier & 

Lee, 2019b, p. 15). 

Relevant example 

Hong et al. (2015) developed two hybrid models which they trialled on the Tatsuoka (2002) 

fractions dataset. The first (“DINA-NIRT”) included both a noncompensatory IRT term and a 

DINA model. The second (the Continuous Conjunctive Model - CCM) was a conjunctive 

model inspired by NIDA, but for continuous latent variables. Its key innovation was 

minimising the number of model parameters as far as possible (notably, no item-level 

parameters) in order to make it practical for situations with a very high number of 

dimensions. By directly addressing the granularity of latent traits, Hong et al. (2015) address 

many of the objections made by von Davier (2018). For instance, Hong et al. (2015, p. 41) 

state that “Whether classification or scoring is desired, it is worth considering the 

interpretation of the latent variables involved and modeling them appropriately. In some 

instances, it may be reasonable to assume that the latent variables are a mixture of discrete 

and continuous variables, and may be modeled accordingly.” The two models developed 

offer a practical way forward: “Hybrid models may afford a chance to fit more realistic 

models, rather than misspecifying the types of the latent variables, merely for the purpose at 

hand”, and in “the difficult case where many continuous latent traits are required along with a 

noncompensatory assumption” the CCM may offer a way forward where other NIRT models 

cannot be fit (p. 42). 
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Research questions 

1. Reporting to schools based on CDMs 

RQ1: In a ‘best-case’ scenario (sufficient resources to meet sample size, item construction 

and test design requirements), how would reporting to schools based on CDMs be an 

improvement upon (i) raw sub-score reporting by topic, (ii) topic or domain scaled scores 

(e.g., Cambridge English scale scores, Cambridge Checkpoint scores), or (iii) raw item level 

results? 

The claimed benefit of reporting to schools based on CDMs is that CDMs provide 

information that is more readily actionable than information from other assessments, and 

thus better placed to have positive effects on teaching and learning. This is because CDMs 

assign students to easily interpretable mastery states – preferably linked to intuitively 

discrete concepts, skills or learning outcomes. A teacher does not need to work out (either 

‘upward’ from item level results, or ‘downward’ from topic-level results) which students have 

mastered which concepts, because this information is immediately provided, and can inform 

teaching immediately.  

The level of granularity is core to this argument. If CDMs are applied to higher-level skills or 

groups of skills (e.g., moving away from the highly granular maths and science models 

demonstrated in the research literature, or the highly granular DLM and Navvy products 

available commercially), the claimed benefit of CDMs seems to diminish, as it is no longer 

plausible to claim a direct link between reporting and “action required”, a point clearly argued 

by Bradshaw (2022). Bradshaw presents “standards-level information” – that is to say, 

information at the level of individual learning objectives such as “Divide multi-digit numbers” 

– as the useful and actionable level of granularity. The “Navvy classroom” products provide 

information at this level (Pearson Assessments US, 2023b).  

The claim that reliable information at an actionable level is useful is sound. However, this 

claim does not directly address the question of how CDM results would improve upon raw 

score or scaled score reporting at the same level of granularity (e.g., the “standards” level 

used in Navvy). Instead, the studies that compare CDM outputs to other types of 

assessment make comparisons to random classification, other CDM outputs, MIRT, or 

Bayesian networks.  

In theory, advantages offered by CDM in comparison with simply reporting raw or scaled 

scores at attribute level include: 

• capitalising on complex loading of (potentially) multiple attributes on a single item 

(Rupp et al., 2010, pp. 83-84), 

• making use of information about how other students performed on items assessing 

the same attribute, and information (if any) about the proportion of respondents in the 

population that have the same attribute profile (Rupp et al., 2010, p. 235), 

• being able to reach an acceptable level of accuracy and reliability with a lower 

number of test items, due to the above factors in combination with the coarse 

(dichotomous) reporting scale at attribute level (Paulsen & Valdivia, 2021, p. 929; 

Rupp, 2023, p. 7). 

https://www.cambridgeenglish.org/exams-and-tests/cambridge-english-scale/
https://www.cambridgeinternational.org/programmes-and-qualifications/cambridge-primary/assessment/cambridge-primary-checkpoint/
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Some authors in the research literature are cautious (von Davier, 2018; von Davier & Lee, 

2019b), and argue that although the use of CDMs is conceptually attractive, the actual 

benefits over other approaches to reporting on sub-domains is still not clear.  

2: Valid reporting from CDMs 

RQ2: What would be the minimum requirements in terms of sample sizes, number of items 

and test design considerations to allow valid reporting based on CDMs? 

In terms of the numbers of items and learners required for CDM use and reporting, there is 

of course “no single answer because, as always, it depends” (Rupp, 2023, p. 9). Factors 

affecting the requirements include: 

• how many attributes each item measures 

• the scale on which attributes are coded 

• how many score points are available on each item (e.g., dichotomous or polytomous) 

• the strength of discriminatory power of items in relation to the attributes they require 

• the match between item difficulty and the test-takers 

• the level of classification consistency desired 

• the (true) distribution of test-takers across the possible latent classes. 

Rupp (2023, p. 9) offers helpful reminders that “the number of high-quality items for each 

attribute/ dimension helps with the classification challenge for learners”, while accurately 

estimating parameters for the items is helped by “the number of learners with distinct, item-

relevant profiles” (i.e., not just a higher total number of test-takers). In particular, “as designs 

get more complex (e.g., adaptive testing, matrix sampling with multiple forms) it is 

particularly important to keep in mind not the numbers overall but the interaction of these 

numbers”. 

Sample size requirements 

Sen and Cohen (2021) carried out a useful simulation study that systematically investigated 

the effect of varying sample size on classification accuracy and parameter recovery, for four 

CDMs: the reduced LCDM, the DINA and DINO models, and the C-RUM. The factors 

manipulated were: 

1. Sample size: 50, 100, 200, 300, 400, 500, 1000 and 5000 simulated test-takers. 

2. Test length: 12, 24 and 36 items. 

3. Number of attributes: three and five; maximum of two attributes per item. 

4. Base rate (proportion of test-takers who have mastered an attribute): 0.25 and 0.50. 

5. Model used to generate the simulated data: reduced LCDM, DINA, DINO, and C-

RUM. 

a. For the specific models (DINA and DINO models, and the C-RUM) the 

underlying CDM structure was the same for all items. 

b. For the reduced LCDM, different underlying DCM structures were used to 

generate the data for different items. For the 12 item tests, the structures 

used were 3 x DINO, 3 x DINA, and 3 x C-RUM.  

The simulations were set up so that item quality, tetrachoric correlations between each pair 

of attributes, and Q-matrices were held constant. Specifically, item discrimination was set to 
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be 0.60 and tetrachoric correlations between each pair of attributes set to be 0.70, based on 

plausible values found in the literature (Sen & Cohen, 2021, p. 3). 

The results for each model are reported at length (Sen & Cohen, 2021, pp. 6-14). As a high-

level summary, the main results were: 

1. In common with previous studies, the results showed improved item parameter 

recovery for larger sample sizes. Sen and Cohen (2021, p. 14) state: “In general, it 

appears that sample sizes should be at least 500 for the four DCMs considered in 

this study in order to obtain precise estimates.” Results were particularly poor for 

sample sizes < 200. For DINA, DINO and C-RUM, sample sizes “as small as N=1000 

would be sufficient to adequately recover all model parameters, under all the given 

conditions”. This was not true for LCDMREDUCED, which required larger sample 

sizes.  

2. Again, in common with previous studies, the findings showed that item parameters 

were estimated more accurately as the test length increased from 12 to 36 items. 

3. Item parameters were recovered less accurately when the number of attributes being 

measured increased from three to five. As Sen and Cohen (2021, p. 14) note, this is 

important to emphasise, because “most of the studies in DCM literature use more 

than three attributes” – and in fact, CDMs have been recommended over alternatives 

such as MIRT precisely for those contexts in which the number of latent attributes is 

high (Hong et al., 2015). Previous results on required sample sizes should be 

considered in light of this finding.   

4. For a fixed number of items measuring an attribute, classification accuracy increased 

as the number of items measuring the attribute in isolation increased. Conversely, 

“classification accuracy suffered most when a pair of attributes was measured” (p. 

14). The ranges of classification accuracy percentages reported (pp. 12-13) were: 

a. C-RUM: 21.6 to 70.3 

b. DINA: 47.5 to 80.2 

c. DINO: 51.0 to 88.3 

d. LCDMREDUCED: 32.8 to 77.5. 

This study represents the most thorough contribution so far to the CDM sample size 

literature, but has two major limitations (both acknowledged by the authors). The first is that 

it did not investigate any general CDM, and the second is that the generalisability of the 

results is “necessarily limited to the conditions manipulated in this study” (p. 14). Hence, 

although Sen & Cohen manipulated a fairly extensive set of factors important to CDM 

estimation, results remain unknown for assessment designs that differ otherwise (even while 

sample size, number of attributes, number of items, and base rate remain in the range of the 

simulation). In particular, previous studies have shown that classification accuracy “varied 

markedly for different Q-matrix designs” (Madison & Bradshaw, 2015; Sen & Cohen, 2021, 

p. 14).  

Sample size and model choice 

The lower sample size requirements of specific CDMs (due to the fewer parameters 

estimated) is one of their advantages over general CDMs such as G-DINA (de la Torre & 

Minchen, 2019; Deonovic et al., 2019). However, this has to be weighed against the 

disadvantages of estimating specific rather than general models (Table 13).  
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Table 13: Pros and cons of general vs specific CDMs (Deonovic et al., 2019). 

General CDMs Specific CDMs 

Require fewer assumptions Require more assumptions 

More likely to fit the data Less likely to fit the data 

More likely to have identification issues Less likely to have identification issues 

Requires larger sample sizes Can be used with smaller sample sizes 

Less straightforward interpretation More straightforward interpretation 

 

Ravand and Baghaei (2020, p. 48) argue that CDM research should develop estimation 

methods able to achieve stable and accurate results with smaller samples. They appear to 

recommend specific CDMs as a stop-gap approach: “Meanwhile, for practical purposes, 

practitioners can use the available less-complex models that require smaller sample sizes.” 

The tension between “practical purposes” and good practice is maintained in their 

conclusions. Ravand and Baghaei (2020, p. 50) state that they share concerns about choice 

of CDM being “commonly an arbitrary process rather than being informed by substantive 

considerations”, and list three possible routes. The first, “blanket imposition of a single 

specific DCM on all the items of a test” is “a practice we advise against”. The preferred route 

is to run a general CDM, then let each item select its own model based on fit. However, this 

recommendation is dependent on the availability of a “large enough (> 5,000)” sample size. 

If the sample size does not permit running a general CDM, then the recommendation is 

“running several specific models and selecting the one fitting the data the best” (p. 50). 

Sample size and context 

Ravand and Baghaei (2020) state that sample size requirements make applications of 

CDMs in classroom contexts “almost impossible” (p. 47). In particular, they argue that “As 

long as DCMs need sample sizes in the magnitude of 1,000–2,000, they never leave the 

psychometric laboratories” (p. 48). This perspective appears to ignore the role of CDM-

based assessments that are designed, estimated, and calibrated (using large representative 

samples) by assessment organisations, and then delivered at classroom level.   

Paulsen and Valdivia (2021) argue explicitly that there are important advantages to 

estimating CDMs at classroom level. They acknowledge that “vendor-designed assessments 

targeted to particular sets of state standards could be designed for classroom use and 

calibrated at a large sample level” (pp. 918-919). However, their view is that “such 

assessments are at a greater distance from the classroom dynamics and may not achieve 

all the benefits documented above” – that is, the high relevance to teaching and learning 

cited as the benefit of CDM-based assessment (p. 919). Paulsen and Valdivia’s position is 

clearly stated: “To achieve the benefits of CDMs at the classroom level, they need to be able 

to function at the sample size of a classroom.”  

This position motivated a simulation study focusing specifically on diagnostic classification 

with small sample sizes. The study compared the use of DINA and two nonparametric 

approaches: nonparametric diagnostic classification (NPC - Chiu & Douglas, 2013) and 

supervised artificial neural networks (SANN - Cui et al., 2016). The factors investigated by 

Paulsen and Valdivia (2021) in the simulation study were: 

• sample sizes: 25, 1000 
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• number of attributes: 2, 4, and 6 

• number of items: 10, 20 and 50 

o Q-matrix complexity held constant at 1.6 attributes per item 

o no item measured more than 2 attributes 

o each Q-matrix contained at least one item measuring each attribute in 

isolation 

o each Q-matrix contained at least 3 items assessing each attribute 

• Q-matrix misspecification: 0%, 10% and 20% misspecification 

• item discrimination: variable. The researchers randomly generated more and less 

effective discrimination parameters for the simulation. 

Data were generated using the RRUM model, and the results for the different models and 

conditions were compared using attribute and profile classification accuracy rates (Paulsen 

& Valdivia, 2021, p. 924). The main findings were: 

• The authors concluded that use of DINA at classroom levels is fundamentally a 

feasible approach. In contrast to previous studies indicating much larger sample 

sizes were necessary, “the DINA model converged at N=25 across 8,399 out of 

8,400 replications.” (p. 929) The authors credit this finding to improved computing 

capacity, and specifically, “use of marginal maximum likelihood (MML) estimation 

with expectation-maximization (EM) algorithm”. 

• The DINA model and NPCD consistently outperformed SANN. 

• Classification accuracy was not improved by increasing sample size. Item 

discrimination, however, “impacted classification accuracy substantively across 

models, more so than any condition.” (p. 930) The number of attributes and number 

of items also had statistically significant impact on classification accuracy.  

• Attribute classification rates (ACA) were better than profile classification rates (PCA), 

and the authors recommend “great care” making inferences about latent classes. In 

particular, “Under high item discrimination, ACA rates across all conditions for DINA 

and NPCD remained above 0.80” (p. 930). By contrast, “Assuming that a .80 

classification accuracy rate was acceptable for low stakes classroom inferences, 

PCA rates only reached or exceeded this threshold for the DINA and NPCD model in 

high item discrimination, two-attribute or 50-item conditions with 0% or 10% Q-matrix 

misspecification. The SANN model never reached .80 PCA.”  

Items per attribute 

No hard-and-fast rule can guarantee the number of items required per attribute in a CDM 

analysis, because this figure will also depend on item quality, the distribution of attributes 

across items (including how many times each is measured in isolation), and the level of 

classification accuracy and consistency that is considered acceptable.   

In the Pearson Navvy products, the diagnostic measurement model reports mastery at the 

level of individual “standards”. Bradshaw, the original creator of the Navvy assessments, 

states that working at “standards” level allows measurement “that is valid and reliable, but 

also only takes 6-8 items to get a diagnosis of either you’ve learned the standard or still 

need help on the standard” (Pearson Assessments US, 2023b). The level of reliability 
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considered acceptable is not reported. In DLM assessments, items are arranged into testlets 

of 3-8 items assessing one “linkage level” – the unit for reporting22.  

Besides these two commercial assessment products, the item numbers and Q-matrix 

designs investigated by simulation studies are the most obvious source of information on 

necessary requirements. These support the rule of thumb stated by Matthew Madison in his 

NCME workshop, that “each attribute should be isolated at least once, preferably more than 

once, on an item for good model performance” (Madison, 2023).  

An observation worth noting is that the requirements for CDM estimation and usage may be 

regarded differently depending on the frame of reference. In comparison with the 

requirements for achieving precise, valid and reliable but unidimensional measurement 

(reporting a sum score, single grade or scale score), CDM requirements can seem 

demanding. If reporting on multiple dimensions is taken as a given, however, and CDMs are 

viewed in comparison with confirmatory factor analysis or MIRT (i.e., reporting fine 

distinctions on multiple dimensions or attributes), then CDMs appear as the more achievable 

or realistic modelling choice, and the requirements of CDMs seem relatively low. This is the 

perspective voiced by Rupp (2023, p. 7): 

“Essentially, they are multidimensional models that use distinctions amongst learners that 

are coarser for each of the dimensions (e.g., mastery/non-mastery) than those used in 

confirmatory factor analysis or multidimensional item response theory models (i.e., scale 

scores with fine distinctions). As a result, one requires fewer items to make coarser 

distinctions on each dimension although one still wants items that have strong discrimination 

power for each dimension.”  

3: CDM outcomes from existing assessments 

RQ3: Are CDMs a technology that assessment organisations could use to report outcomes 

from existing assessments? 

As noted in earlier sections, there are serious objections in the literature to “retrofitting” 

CDMs to existing, non-diagnostic assessments (Bradshaw et al., 2014; Rupp & Templin, 

2009). The practice has been described as a “the-measure-of-last-resort” (Ravand & 

Baghaei, 2020, p. 27), but despite this criticism, published examples of retrofitting 

outnumber “true” CDM applications by a large margin. 

Retrofitting CDMs to existing assessments is considered particularly challenging “when the 

breadth of the domain is relatively wide” (Deonovic et al., 2019, p. 446), which may be a 

particularly relevant concern for high-stakes curriculum-based assessments. The immediate 

reason why breadth of domain causes problems for CDMs is that it forces either coarse 

granularity or a large number of attributes. Deonovic et al. also list poor item quality (i.e., 

poor discrimination) and Q-vectors lacking in variability as problems for retrofitting to 

relatively wide-domain assessments. A practical solution is to break down larger domains 

 

 

22 In the DLM system, “Each linkage level represents one or more nodes, or skills, in the learning map 
model that underlies the assessment system” and reporting contains a classification of mastery or 
non-mastery of each linkage level (Clark et al., 2017, p. 6). The DLM approach (and its terminology) 
are not the most straightforward to understand but are explained fully in the technical documentation 
(Dynamic Learning Maps Consortium, 2016). 
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where possible, as demonstrated by Deonovic et al. (2019) in the development of the 

Education Companion App (modelling “geometry”, “algebra”, and “number” separately, for 

instance, rather than “mathematics”). 

Another heightened risk for retrofitting studies is that model parameters are not identifiable, 

due to the combinations of attributes targeted (and not targeted) by test items. Deonovic et 

al. (2019) state that “additional information (e.g., extra test items, ancillary variables) than 

can supplement test data, at least for some examinees, may be needed to ensure that every 

examinee is reliably classified” (p. 446). Within the modelling for the Education Companion 

App, Deonovic and colleagues created “nuisance” attributes to account for skills not included 

in the Q-matrices of the domain-focused CDM analyses23.  

4: Reporting considerations 

RQ4: What are the considerations around score interpretation and transparency? 

Bradshaw and Levy (2019) emphasise the need to first interpret (and agree on) the 

outcomes of probabilistic classification (such as carried out using CDMs) in a measurement 

sense, before deciding on the implications for reporting. They appear to assume that the 

probabilities of mastery will definitely be reported (in some form) to stakeholders. Their 

discussion then focuses on how to make clear what these probabilities are and what they 

mean. In general, classification of test-takers using CDMs is “based upon the probability of 

membership in each group, where the sum of the probabilities across all groups equals 1” 

(p. 81). As discussed earlier, this can involve classification based on probabilities of latent 

class membership (i.e., membership of a latent class which is defined by mastery and non-

mastery across a set of multiple attributes). Alternatively (the EAP estimate approach), we 

may be interested in the probabilities of classifying the test-taker as “master” or “non-master” 

of a single attribute. In both cases, “probability of membership indicates the certainty— and 

really, the uncertainty—of the classification. The (un)certainty is predominantly driven by 

how consistently an examinee exhibited the attribute on the items across the assessment.”24  

Bradshaw and Levy particularly emphasise the need to avoid any of four common 

misinterpretations (pp. 82-83) of CDM classification probabilities: 

1. Probabilities as classifications by a different name 

 

 

23 Specifically, in analysing each domain (“geometry”, “algebra”, and “number”), the domain-specific 
attributes were the focus of analysis and the rest (e.g., number skills when looking at the algebra test) 
were collapsed into coarser nuisance attributes. So, the total attributes analysed in each domain were 
the domain-specific ones plus several nuisance attributes. For further details, see Appendix B. 
24 Bradshaw and Levy acknowledge immediately that this raises the questions “Whose certainty?” and 
“What is certainty?”, which they explore in some depth. Briefly, Bradshaw and Levy argue that 
certainty “belongs” to “all of the assumptions, beliefs, and decisions that contributed to the 
assessment enterprise” – the collective consisting of everything from attribute operationalisation to 
sample collection to the physical testing environment (p. 81). The word “certainty” is intended to 
“communicate a degree of sureness that is aligned with the understanding of the likelihood of an 
event occurring” (p. 81). Bradshaw and Levy suggest that in the case of CDMs, there is a case for 
communicating that “the results are more clear when probabilities of mastery are closer to 0 or 1 and 
less clear when they are near .5” (p. 81). They also note that a relative frequency metaphor may be 
helpful (i.e., where the probability of mastery is 0.75, “out of 100 students that responded to the items 
in this way, we expect that 75 of them have mastered the concept and 25 of them have not” (p. 82)).  
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2. Probabilities as percent of items correct. 

3. Probabilities as amount of mastery. 

4. Probabilities as progress. 

Bradshaw and Levy (2019) give two good arguments for taking special care when reporting 

from CDMs. First, that “the literature is filled with evidence that decision making based on 

probabilities is difficult for adults, including adults with high intelligence and successful 

careers” (p. 82). Second, that the results from CDMs – classifications with a measure of 

uncertainty – are “unfamiliar not only to end users, but also to much of the community of 

psychometric and assessment experts” (p. 83).  

Clark et al. (2022) - colleagues from the University of Kansas ATLAS centre, which 

developed the Dynamic Learning Maps products - carried out a useful empirical investigation 

of teacher literacy in relation to diagnostic assessment systems. They collected data from a 

survey of teachers using DLM assessments, and focus groups with teachers who had been 

using DLM assessments for at least one year. The findings showed that teachers “were 

comfortable” using the term mastery to discuss assessment results, student knowledge, 

DLM score reports and their plans for action (p. 8). However, it was clear that teachers had 

gaps in their understanding and also some active misunderstandings, including those listed 

by Bradshaw and Levy. Clark et al. noted a lack of nuance: teachers “did not talk about 

mastery as reflecting skills that were likely mastered or as being based on probabilities of 

mastery”, but rather, as absolute facts. In addition, it was “evident from their comments that 

teachers were unsure how mastery was defined or determined”, teachers referred to 

mastery score reports “as what students ‘got right’”, “some misinterpreted mastery as 

representing a percent correct rather than a probability value”, some “shared confusion 

about how results were calculated”, and some referred to a “black box” (p. 8). Clark et al. 

emphasised that our focus should remain on how this affects assessment validity. The 

question is not whether mastery classifications were in some sense misunderstood (they 

were), but rather, whether “these more nuanced understandings … constitute fundamental 

understandings that are critical for appropriate use of results” (p. 8).  

In contrast to the authors cited above, Ravand and Baghaei (2020, p. 48) assert that “DCM 

outputs do not seem to pose any difficulty for teachers” and that “the complexity issue is not 

very serious”. Their logic is that “Although the mathematical bases of DCMs are extremely 

sophisticated, practitioners do not need to get involved with them”. Further: “On the contrary, 

we think that understanding what DCMs do and their benefits are easy to explain for 

teachers. All school teachers with minimum teaching certification requirements are familiar 

with diagnostic testing, providing feedback for improved learning, and the topic of subskills 

underlying basic skills in math, languages, sciences, etc. Therefore, it should be a lot easier 

for teachers to grasp and appreciate the applications of DCMs in their career than the 

application of IRT models or structural equation models.” (Ravand & Baghaei, 2020, p. 48). 

The comparative argument seems plausible, as does the assertion that teachers need not 

fully engage with the mathematical details of CDMs. However, Ravand and Baghaei do not 

appear to consider that CDM outputs (i.e., classifications, and probabilities) could in fact be 

misunderstood in ways important to assessment validity – precisely as illustrated by Clark et 

al. (2022) – whether or not they “seem” to pose difficulty for teachers.  

In some implementations of CDMs, for instance in some of the Navvy product dashboards 

presented to teachers, probabilities of mastery are not in fact immediately reported. It may 
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be that teachers can obtain the probabilities of mastery in reporting if they request them, but 

the probabilities are not presented in the dashboard outputs advertised as the “usable” 

assessment output in marketing and public-facing materials. Instead, the dashboards simply 

convey the classification decisions per student and attribute, in tables (or similar) with green 

and red shading. In the example dashboard shown in Figure 6, green indicates mastery; 

yellow, blue and red indicate non-mastery after varying numbers of attempts; and the 

padlock symbol indicates a not-yet-assessed attribute.  

 

Figure 6: Example dashboard from Navvy products (Pearson Assessments US, 2023a). 

5: Possible CDM purposes  

RQ5: For which purposes might assessment organisations want to use CDMs? 

Taking into consideration the aspects reviewed so far, the evidence suggests that (i) 

assessment organisations would not find it easy to use CDMs, but that (ii) there is potential 

to use CDMs for four different purposes: 

1. To structure the design, scoring and reporting of diagnostic tests. 

2. To drive adaptivity and/or personalisation within advanced digital learning and 

assessment products25. 

 

 

25 Note, this refers to using the results of CDM analyses to drive adaptation at a higher level in the 
product, rather than introducing adaptivity within assessments themselves (which would add further 
complexity). For instance, the recommended pathway through pages of digital learning content can 
adapt based on the estimation of mastery (or non-mastery) of a core concept. This kind of approach is 
seen in Dynamic Learning Maps, where the system is “adaptive between testlets” – that is, testlets 
assessing concepts at particular levels are fixed (small) units, and the system adapts and 
personalises based on their results (Dynamic Learning Maps Consortium, 2016). 
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3. For validation work, especially to verify specific claims about the cognitive behaviours 

elicited by test items. 

4. To research the nature of constructs we wish to assess in a more exploratory way, 

and to research their role in successfully answering items that we expect to measure 

these constructs. 

Table 14 lists different kinds of assessment and the ways in which each could potentially 

make use of CDMs. Since the third and fourth purposes are closely related, they are 

combined in what follows.  

For validation and construct research 

The use of CDMs for validation and construct research is in some ways the most 

straightforward purpose to consider. There are substantial hurdles to overcome, as 

documented throughout this report, but there is a potential role for CDMs to assist validation 

and construct research to support any of the assessment types in Table 14. 

High-stakes assessments have already been investigated using CDM methods in several 

retrofitting studies, for example on IELTS (Mirzaei et al., 2020) and the 

Cambridge/Singapore O Level English listening test (Aryadoust, 2018). Furthermore, the 

numerous examples of retrofitting studies in mathematics and science domains demonstrate 

how relatively broad domain assessments can be explored using CDM methods (e.g., 

Delafontaine et al., 2022; Deonovic et al., 2019; Jia et al., 2021). In comparison with 

multidimensional IRT, both CDMs and the AHM make it much more straightforward to 

analyse the hierarchical structures between skills (George & Robitzsch, 2021, p. 108). 

CDMs have the additional advantage, over the AHM, of more easily allowing comparisons 

between groups (as the AHM is not a likelihood-based approach).  

Potential for “true” CDM applications 

Where the objective is to classify test-takers according to mastery of discrete skills or 

attributes, it is possible to imagine CDMs being applied in many of the assessment types in 

Table 14. This is not (of course) to say that CDMs would be appropriate or helpful in all 

baseline assessments (for example), but that baseline assessment in general is not 

incompatible with CDMs. At least in some contexts, a CDM-based baseline assessment 

could be developed.  

There are two assessment types in Table 14 for which it is very difficult to imagine CDMs 

being useful in live assessment and scoring. Most fundamentally, this is because both 

“summative” and “selection” assessments are very likely to be used for ranking students, at 

least as one of their purposes. These assessment types are therefore not very compatible 

with CDMs, because “rank ordering examinees along a continuum is not what CDMs are 

designed to do” (Bradshaw & Levy, 2019, p. 83). Attempting to make a CDM generate a 

rank order would be “at odds with the fundamental assumptions of the model upon which the 

validity of the model interpretations relies”: CDMs assume two underlying groups [per 

attribute], and do not attempt to make further distinctions within the “masters” and “non-

masters” groups (p. 83). An additional factor is that since summative and selection 

assessments are often high-stakes for candidates (and for schools), the transparency and 

explainability of decisions are particularly important. While not all authors perceive a problem 

for CDMs here (see RQ4), it is certainly easier to imagine widespread CDM use in non-

summative and non-selection assessments first.  
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Besides the type of assessment, the domain being assessed is important for whether CDMs 

are an appropriate choice. Multiple factors are involved: the breadth of the domain as 

defined by the assessment; whether that domain has been mapped in granular detail; and 

whether it is possible for the domain to be mapped in granular detail in the ways 

demonstrated in mathematics and science topics, where much CDM research and 

development has focused. Here it is again worth noting that the attributes required by items 

in the Tatsuoka (2002) dataset – a tightly focused dataset on fractions subtraction – have 

been researched and debated for two decades without consensus being reached. From the 

context of learning modelling (in ITS), Pelánek (2017) explicitly argues that results about 

model choice “probably do not generalize” and that both the domain and the purpose of 

modelling are important for ensuring “an appropriate choice of a modelling approach” (p. 

328). For example, Pelánek (2017) states that logistic models are the better choice for 

modelling “memory and fluency building processes” where a student’s knowledge state 

changes gradually. By contrast, Bayesian Knowledge Tracing (BKT) is “more appropriate for 

modeling understanding and sense making processes”, as its assumptions are that learning 

involves a discrete transition from a state of not-knowing to knowing - but this is only 

appropriate “for fine grained knowledge components” (p. 328). 

Potential to drive adaptivity and/or personalisation 

The assessment types for which CDMs are most obviously relevant here are learning 

oriented assessment, and integrated learning and assessment, as these are assessment 

types with high likelihoods of being incorporated into a digital learning and assessment 

system where adaptivity and personalisation are desired. Diagnostic assessments and 

formative assessments, similarly, are assessment types more likely than others to be 

incorporated into such a system, and hence benefit from CDMs applied in this way.  

Table 14: Kinds of assessment and relevance of CDMs. 

Assessment type 
Purpose 1: potential 

for “true” CDM 
application 

Purpose 2: driving 
digital product 
functionality 

Purpose 3 & 4: 
validation and 

construct research 

Baseline assessment Yes Possibly? Yes 

Diagnostic assessment Yes Yes Yes 

Formative assessment Yes Yes Yes 

Learning Oriented 
assessment 

Yes Yes Yes 

Integrated learning and 
assessment 

Yes* Yes* Yes 

Summative assessment Unlikely/no No Yes 

Achievement test Yes Possibly? Yes 

Proficiency test Yes Possibly? Yes 

Aptitude/ability 
assessment 

Possibly Possibly? Yes 

Selection assessment Unlikely/no No Yes 

Progress / progression 
test 

Yes (relative to 
baseline) 

Possibly? Yes 

Placement assessments Yes, potentially Possibly? Yes 



46 

 

References 

 

Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D., & Williamson, D. M. (2015). 
Bayesian networks in educational assessment. Springer.  

 
Almond, R. G., & Zapata-Rivera, J.-D. (2019). Bayesian networks. In M. von Davier & Y.-S. 

Lee (Eds.), Handbook of diagnostic classification models: Models and model 
extensions, applications, software packages (pp. 81-106). Springer. 
https://doi.org/10.1007/978-3-030-05584-4_4  

 
Aryadoust, V. (2018). A cognitive diagnostic assessment study of the listening test of the 

Singapore–Cambridge General Certificate of Education O-Level: Application of 
DINA, DINO, G-DINA, HO-DINA, and RRUM. International Journal of Listening, 
35(1), 29-52. https://doi.org/10.1080/10904018.2018.1500915  

 
Bradshaw, L. (2016). Diagnostic classification models. In A. A. Rupp & J. P. Leighton (Eds.), 

Handbook of Cognition and Assessment (pp. 297–327). Wiley-Blackwell.  
 
Bradshaw, L. (2022). Empowering personalized instruction with a three-tiered approach to 

learning evidence. [White paper]. Pearson Education. 
https://www.pearsonassessments.com/content/dam/school/global/clinical/us/assets/d
istrict-assessment/navvy-white-paper.pdf  

 
Bradshaw, L., Izsák, A., Templin, J., & Jacobson, E. (2014). Diagnosing teachers’ 

understandings of rational numbers: Building a multidimensional test within the 
diagnostic classification framework. Educational Measurement: Issues and Practice, 
33(1), 2-14. https://doi.org/10.1111/emip.12020  

 
Bradshaw, L., & Levy, R. (2019). Interpreting probabilistic classifications from diagnostic 

psychometric models. Educational Measurement: Issues and Practice, 38(2), 79-88. 
https://doi.org/10.1111/emip.12247 

 
Briganti, G., Scutari, M., & McNally, R. J. (2022). A tutorial on Bayesian networks for 

psychopathology researchers. Psychological Methods. 
https://doi.org/10.1037/met0000479  

 
Camara, W., O'Connor, R., Mattern, K., & Hanson, M. A. (Eds.). (2015). Beyond academics: 

A holistic framework for enhancing education and workplace success. ACT Research 
Report Series 2015 (4). ACT. 
https://www.act.org/content/dam/act/unsecured/documents/ACT_RR2015-4.pdf.  

 
Chen, J., & de la Torre, J. (2013). A general cognitive diagnosis model for expert-eefined 

polytomous attributes. Applied Psychological Measurement, 37(6), 419-437. 
https://doi.org/10.1177/0146621613479818  

 
Chen, Y., Li, X., Liu, J., & Ying, Z. (2018). Recommendation system for adaptive learning. 

Applied Psychological Measurement, 42(1), 24-41. 
https://doi.org/10.1177/0146621617697959  

 
Chiu, C.-Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by 

proximity to ideal response patterns. Journal of Classification, 30(2), 225-250. 
https://doi.org/10.1007/s00357-013-9132-9  

https://doi.org/10.1007/978-3-030-05584-4_4
https://doi.org/10.1080/10904018.2018.1500915
https://www.pearsonassessments.com/content/dam/school/global/clinical/us/assets/district-assessment/navvy-white-paper.pdf
https://www.pearsonassessments.com/content/dam/school/global/clinical/us/assets/district-assessment/navvy-white-paper.pdf
https://doi.org/10.1111/emip.12020
https://doi.org/10.1111/emip.12247
https://doi.org/10.1037/met0000479
https://www.act.org/content/dam/act/unsecured/documents/ACT_RR2015-4.pdf
https://doi.org/10.1177/0146621613479818
https://doi.org/10.1177/0146621617697959
https://doi.org/10.1007/s00357-013-9132-9


47 

 

 
Chiu, C. Y., & Köhn, H. F. (2019). Nonparametric methods in cognitively diagnostic 

assessment. In M. Von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic 
classification Models (pp. 107-132). Springer.  

 
Chiu, C. Y., Sun, Y., & Bian, Y. (2018). Cognitive diagnosis for small educational programs: 

The general nonparametric classification method. Psychometrika, 83(2), 355-375. 
https://doi.org/10.1007/s11336-017-9595-4  

 
Clark, A. K., Nash, B., & Karvonen, M. (2022). Teacher assessment literacy: Implications for 

diagnostic assessment systems. Applied Measurement in Education, 1-16. 
https://doi.org/10.1080/08957347.2022.2034823  

 
Clark, A. K., Nash, B., Karvonen, M., & Kingston, N. (2017). Condensed mastery profile 

method for setting standards for diagnostic assessment systems. Educational 
Measurement: Issues and Practice, 36(4), 5-15. https://doi.org/10.1111/emip.12162  

 
Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of 

procedural knowledge. User Modeling and User-Adapted Interaction, 4, 253-278.  
 
Cui, Y., Gierl, M., & Guo, Q. (2016). Statistical classification for cognitive diagnostic 

assessment: An artificial neural network approach. Educational Psychology, 36(6), 
1065-1082. https://doi.org/10.1080/01443410.2015.1062078  

 
Cui, Y., Gierl, M. J., & Chang, H.-H. (2012). Estimating classification consistency and 

accuracy for cognitive diagnostic assessment. Journal of Educational Measurement, 
49, 19-38.  

 
Culbertson, M. J. (2016). Bayesian networks in educational assessment: The state of the 

field. Applied Psychological Measurement, 40(1), 3-21. 
https://doi.org/10.1177/0146621615590401  

 
Culpepper, S. A., & Hudson, A. (2018). An improved strategy for Bayesian estimation of the 

reduced reparameterized unified model. Applied Psychological Measurement, 42(2), 
99-115. https://doi.org/10.1177/0146621617707511  

 

de la Torre, J. (2008). An empirically based method of Q‐matrix validation for the DINA 

model: Development and applications. Journal of Educational Measurement, 45(4), 
343-362.  

 
de la Torre, J., & Chiu, C. Y. (2016). A general method of empirical Q-matrix validation. 

Psychometrika, 81(2), 253-273. https://doi.org/10.1007/s11336-015-9467-8  
 
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive 

diagnosis. Psychometrika, 69(3), 333-353. https://doi.org/10.1007/BF02295640  
 
de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive 

diagnosis: An analysis of fraction subtraction data. Psychometrika, 73(4), 595-624. 
https://doi.org/10.1007/s11336-008-9063-2  

 
de la Torre, J., & Minchen, N. D. (2019). The G-DINA model framework. In M. von Davier & 

Y.-S. Lee (Eds.), Handbook of diagnostic classification models: Models and model 
extensions, applications, software packages (pp. 155-169). Springer. 
https://doi.org/10.1007/978-3-030-05584-4_7  

https://doi.org/10.1007/s11336-017-9595-4
https://doi.org/10.1080/08957347.2022.2034823
https://doi.org/10.1111/emip.12162
https://doi.org/10.1080/01443410.2015.1062078
https://doi.org/10.1177/0146621615590401
https://doi.org/10.1177/0146621617707511
https://doi.org/10.1007/s11336-015-9467-8
https://doi.org/10.1007/BF02295640
https://doi.org/10.1007/s11336-008-9063-2
https://doi.org/10.1007/978-3-030-05584-4_7


48 

 

 
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-

199. https://doi.org/10.1007/s11336-011-9207-7  
 
Delafontaine, J., Chen, C., Park, J. Y., & Van den Noortgate, W. (2022). Using country-

specific Q-matrices for cognitive diagnostic assessments with international large-
scale data. Large-scale Assessments in Education, 10(1). 
https://doi.org/10.1186/s40536-022-00138-4  

 
Deonovic, B., Chopade, P., Yudelson, M., de la Torre, J., & von Davier, A. A. (2019). 

Application of cognitive diagnostic models to learning and assessment systems. In 
M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models: 
Models and model extensions, applications, software packages (pp. 437-460). 
Springer.  

 
DiBello, L. V., Stout, W. F., & Roussos, L. A. (1995). Unified cognitive/psychometric 

diagnostic assessment likelihood-based classification techniques. In P. Nichols, S. 
Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 361-389). 
Erlbaum.  

 
Doignon, J.-P., & Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. 

International Journal of Man-Machine Studies, 23(2), 175-196.  
 
Doignon, J.-P., & Falmagne, J.-C. (2012). Knowledge spaces. Springer Science & Business 

Media.  
 
Dynamic Learning Maps Consortium. (2016). 2014-2015 Technical manual – Integrated 

model. University of Kansas, Center for Educational Testing and Evaluation. 
https://dynamiclearningmaps.org/sites/default/files/documents/publication/Technical_
Manual_IM_2014-15.pdf  

 
George, A. C., & Robitzsch, A. (2021). Validating theoretical assumptions about reading with 

cognitive diagnosis models. International Journal of Testing, 21(2), 105-129. 
https://doi.org/10.1080/15305058.2021.1931238  

 
George, A. C., Robitzsch, A., Kiefer, T., Groß, J., & Ünlü, A. (2016). The R package CDM for 

cognitive diagnosis models. Journal of Statistical Software, 74(2). 
https://doi.org/10.18637/jss.v074.i02  

 
Graesser, A. C., Hu, X., & Sottilare, R. (2018). Intelligent tutoring systems. In F. Fischer, C. 

E. Hmelo-Silver, S. R. Goldman, & P. Reimann (Eds.), International handbook of the 
learning sciences. Taylor & Francis.  

 
Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive 

abilities: Blending theory with practicality. [PhD thesis]. University of Illinois at 
Urbana-Champaign.  

 
Heller, J., Stefanutti, L., Anselmi, P., & Robusto, E. (2015). On the link between cognitive 

diagnostic models and knowledge space theory. Psychometrika, 80(4), 995-1019. 
https://doi.org/10.1007/s11336-015-9457-x  

 
Henson, R. A., Templin, J., & Willse, J. T. (2009). Defining a family of cognitive diagnosis 

models using log-linear models with latent variables. Psychometrika, 74, 191-210.  
 

https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1186/s40536-022-00138-4
https://dynamiclearningmaps.org/sites/default/files/documents/publication/Technical_Manual_IM_2014-15.pdf
https://dynamiclearningmaps.org/sites/default/files/documents/publication/Technical_Manual_IM_2014-15.pdf
https://doi.org/10.1080/15305058.2021.1931238
https://doi.org/10.18637/jss.v074.i02
https://doi.org/10.1007/s11336-015-9457-x


49 

 

Hong, H., Wang, C., Lim, Y. S., & Douglas, J. (2015). Efficient models for cognitive 
diagnosis With continuous and mixed-type latent variables. Applied Psychological 
Measurement, 39(1), 31-43. https://doi.org/10.1177/0146621614524981  

 
Hu, B., & Templin, J. (2020). Using diagnostic classification models to validate attribute 

hierarchies and evaluate model fit in Bayesian networks. Multivariate Behavioural 
Research, 55(2), 300-311. https://doi.org/10.1080/00273171.2019.1632165  

 
Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for 

cognitive diagnosis models. Educational and Psychological Measurement, 71(2), 
407-419. https://doi.org/10.1177/0013164410388832  

 
Jia, B., Zhu, Z., & Gao, H. (2021). International comparative study of statistics learning 

trajectories based on PISA data on cognitive diagnostic models. Frontiers in 
Psychology, 12, 1-9. https://doi.org/10.3389/fpsyg.2021.657858  

 
Johnson, M. S., & Sinharay, S. (2018). Measures of agreement to assess attribute-level 

classification accuracy and consistency for cognitive diagnostic assessments. 
Journal of Educational Measurement, 55(4), 635-664.  

 
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, 

and connections with nonparametric item response theory. Applied Psychological 
Measurement, 25(3), 258-272. https://doi.org/10.1177/01466210122032064  

 
Karvonen, M., Burnes, J. J., Clark, A. K., & Kavitsky, L. (2020). Aligned academic 

achievement standards to support pursuit of postsecondary opportunities: 
Instructionally embedded model. Technical Report No. 20-02. University of Kansas 
ATLAS (Accessible Teaching, Learning, and Assessment Systems). 
https://dynamiclearningmaps.org/sites/default/files/documents/publication/Aligned_Ac
ademic_Achievement_Standards_to_Support_Pursuit_of_Postsecondary_Opportunit
ies_Instructionally_Embedded_Model.pdf  

 
Leighton, J. P., & Gierl, M. J. (Eds.). (2007a). Cognitive diagnostic assessment for 

education: Theory and applications. Cambridge University Press. 
https://doi.org/10.1017/CBO9780511611186.  

 
Leighton, J. P., & Gierl, M. J. (2007b). Why cognitive diagnostic assessment? In J. P. 

Leighton & M. J. Gierl (Eds.), Cognitive diagnostic assessment for education: theory 
and applications (pp. 3-18). Cambridge University Press.  

 
Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for 

cognitive assessment: A variation on Tatsuoka's rule‐space approach. Journal of 

Educational Measurement, 41(3), 205-237.  
 
Liu, J., & Kang, H.-A. (2019). Q-Matrix learning via latent variable selection and identifiability. 

In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models: 
Models and model extensions, applications, software packages (pp. 247-263). 
Springer. https://doi.org/10.1007/978-3-030-05584-4_12  

 
Ma, C., Ouyang, J., & Xu, G. (2023). Learning latent and hierarchical structures in cognitive 

diagnosis models. Psychometrika, 88(1), 175-207. https://doi.org/10.1007/s11336-
022-09867-5  

 

https://doi.org/10.1177/0146621614524981
https://doi.org/10.1080/00273171.2019.1632165
https://doi.org/10.1177/0013164410388832
https://doi.org/10.3389/fpsyg.2021.657858
https://doi.org/10.1177/01466210122032064
https://dynamiclearningmaps.org/sites/default/files/documents/publication/Aligned_Academic_Achievement_Standards_to_Support_Pursuit_of_Postsecondary_Opportunities_Instructionally_Embedded_Model.pdf
https://dynamiclearningmaps.org/sites/default/files/documents/publication/Aligned_Academic_Achievement_Standards_to_Support_Pursuit_of_Postsecondary_Opportunities_Instructionally_Embedded_Model.pdf
https://dynamiclearningmaps.org/sites/default/files/documents/publication/Aligned_Academic_Achievement_Standards_to_Support_Pursuit_of_Postsecondary_Opportunities_Instructionally_Embedded_Model.pdf
https://doi.org/10.1017/CBO9780511611186
https://doi.org/10.1007/978-3-030-05584-4_12
https://doi.org/10.1007/s11336-022-09867-5
https://doi.org/10.1007/s11336-022-09867-5


50 

 

Maas, L., Brinkhuis, M. J. S., Kester, L., & Wijngaards-de Meij, L. (2022). Diagnostic 
classification models for actionable feedback in education: Effects of sample size and 
assessment length. Frontiers in Education, 7, 1-17. 
https://doi.org/10.3389/feduc.2022.802828  

 
Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment 

of mastery. Journal of Educational Statistics, 2(2), 99-120.  
 
Madison, M. (2023). Introduction to diagnostic measurement models. Diagnostic 

measurement SIGMIE webinar, NCME, March 7, 2023.  
 
Madison, M. J., & Bradshaw, L. P. (2015). The effects of Q-matrix design on classification 

accuracy in the log-linear cognitive diagnosis model. Educational and Psychological 
Measurement, 75(3), 491-511.  

 
Madison, M. J., & Bradshaw, L. P. (2018). Assessing growth in a diagnostic classification 

model framework. Psychometrika, 83(4), 963-990. https://doi.org/10.1007/s11336-
018-9638-5  

 
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 

64(2), 187-212. https://doi.org/10.1007/BF02294535  
 
Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., Maas, H., 

& Maris, G. (2018). An introduction to network psychometrics: Relating Ising network 
models to item response theory models. Multivariate Behavioural Research, 53(1), 
15-35. https://doi.org/10.1080/00273171.2017.1379379  

 
McNally, R. J. (2023). Points of contact between network psychometrics and experimental 

psychopathology. Journal of Experimental Psychopathology, 14(1), 1-7.  
 
Min, S., Cai, H., & He, L. (2021). Application of bi-factor MIRT and higher-order CDM models 

to an in-house EFL listening test for diagnostic purposes. Language Assessment 
Quarterly, 19(2), 189-213. https://doi.org/10.1080/15434303.2021.1980571  

 
Mirzaei, A., Heidari Vincheh, M., & Hashemian, M. (2020). Retrofitting the IELTS reading 

section with a general cognitive diagnostic model in an Iranian EAP context. Studies 
in Educational Evaluation, 64(Mar 2020), Article 100817. 
https://doi.org/10.1016/j.stueduc.2019.100817  

 
Mislevy, R. J., Almond, R. G., & Lukas, J. F. (2003). A brief introduction to evidence-centred 

design. https://doi.org/10.1002/j.2333-8504.2003.tb01908.x 
 
Mislevy, R. J., & Bolsinova, M. (2021). Concepts and models from psychometrics. In A. A. 

von Davier, R. J. Mislevy, & J. Hao (Eds.), Computational psychometrics: New 
methodologies for a new generation of digital learning and assessment: With 
examples in R and Python (pp. 81-107). Springer International Publishing. 
https://doi.org/10.1007/978-3-030-74394-9_6  

 
Paulsen, J., & Valdivia, D. S. (2021). Examining cognitive diagnostic modeling in classroom 

assessment conditions. The Journal of Experimental Education, 90(4), 916-933. 
https://doi.org/10.1080/00220973.2021.1891008  

 

https://doi.org/10.3389/feduc.2022.802828
https://doi.org/10.1007/s11336-018-9638-5
https://doi.org/10.1007/s11336-018-9638-5
https://doi.org/10.1007/BF02294535
https://doi.org/10.1080/00273171.2017.1379379
https://doi.org/10.1080/15434303.2021.1980571
https://doi.org/10.1016/j.stueduc.2019.100817
https://doi.org/10.1002/j.2333-8504.2003.tb01908.x
https://doi.org/10.1007/978-3-030-74394-9_6
https://doi.org/10.1080/00220973.2021.1891008


51 

 

Pearson Assessments US. (2023a). Navvy assessments. Pearson. Retrieved 19 May 2023 
from https://www.pearsonassessments.com/large-scale-assessments/district-
assessment/navvy-assessment.html 

 
Pearson Assessments US. (2023b). Navvy: A fresh way to navigate student learning [Video]. 

YouTube. https://www.youtube.com/watch?v=P80f7AkDi-k  
 
Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: an overview 

of learner modeling techniques. User Modeling and User-Adapted Interaction, 27(3-
5), 313-350. https://doi.org/10.1007/s11257-017-9193-2  

 
Pelánek, R. (2018). The details matter: methodological nuances in the evaluation of student 

models. User Modeling and User-Adapted Interaction, 28(3), 207-235. 
https://doi.org/10.1007/s11257-018-9204-y  

 
Ravand, H. (2016). Application of a cognitive diagnostic model to a high-stakes reading 

comprehension test. Journal of Psychoeducational Assessment, 34(8), 782-799. 
https://doi.org/10.1177/0734282915623053  

 
Ravand, H., & Baghaei, P. (2020). Diagnostic classification models: Recent developments, 

practical issues, and prospects. International Journal of Testing, 20(1), 24-56. 
https://doi.org/10.1080/15305058.2019.1588278  

 
Ravand, H., & Robitzsch, A. (2018). Cognitive diagnostic model of best choice: a study of 

reading comprehension. Educational Psychology, 38(10), 1255-1277. 
https://doi.org/10.1080/01443410.2018.1489524  

 
Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2014). CDM: Cognitive diagnosis 

modeling [Software-Handbuch]. R package version 4.1. http://CRAN.R-
project.org/package=CDM  

 
Roussos, L. A., Di Bello, L. V., Stout, W., Hartz, S. M., Henson, R. A., & Templin, J. (2007). 

The fusion model skills diagnosis system. In J. P. Leighton & M. J. Gierl (Eds.), 
Cognitive diagnostic assessment for education: Theory and applications. (pp. 275-
318). Cambridge University Press.  

 
Rupp, A. A. (2023). Primer on diagnostic classification models (2.0 ed.). Center for 

Assessment. https://www.nciea.org/library/primer-on-diagnostic-classification-
models-dcms/  

 
Rupp, A. A., & Templin, J. (2008a). The effects of Q-Matrix misspecification on parameter 

estimates and classification accuracy in the DINA model. Educational and 
Psychological Measurement, 68(1), 78-96.  

 
Rupp, A. A., & Templin, J. (2008b). Unique characteristics of diagnostic classification 

models: A comprehensive review of the current state-of-the-art. Measurement: 
Interdisciplinary Research and Perspectives, 6(4), 219-262. 
https://doi.org/10.1080/15366360802490866  

 
Rupp, A. A., & Templin, J. (2009). The (un)usual suspects? A measurement community in 

search of its identity. Measurement: Interdisciplinary Research & Perspective, 7(2), 
115-121. https://doi.org/10.1080/15366360903187700  

 

https://www.pearsonassessments.com/large-scale-assessments/district-assessment/navvy-assessment.html
https://www.pearsonassessments.com/large-scale-assessments/district-assessment/navvy-assessment.html
https://www.youtube.com/watch?v=P80f7AkDi-k
https://doi.org/10.1007/s11257-017-9193-2
https://doi.org/10.1007/s11257-018-9204-y
https://doi.org/10.1177/0734282915623053
https://doi.org/10.1080/15305058.2019.1588278
https://doi.org/10.1080/01443410.2018.1489524
http://cran.r-project.org/package=CDM
http://cran.r-project.org/package=CDM
https://www.nciea.org/library/primer-on-diagnostic-classification-models-dcms/
https://www.nciea.org/library/primer-on-diagnostic-classification-models-dcms/
https://doi.org/10.1080/15366360802490866
https://doi.org/10.1080/15366360903187700


52 

 

Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, 
methods, and applications. The Guilford Press.  

 
Sen, S., & Cohen, A. S. (2021). Sample size requirements for applying diagnostic 

classification models. Frontiers in Psychology, 11, 1-16. 
https://doi.org/10.3389/fpsyg.2020.621251  

 
Shafipoor, M., Ravand, H., & Maftoon, P. (2021). Test-level and item-level model fit 

comparison of general vs. specific diagnostic classification models: A case of true 
DCM. Language Testing in Asia, 11(1). https://doi.org/10.1186/s40468-021-00148-z  

 
Sinharay, S., & Johnson, M. S. (2019). Measures of agreement: Reliability, classification 

accuracy, and classification consistency. In M. von Davier & Y.-S. Lee (Eds.), 
Handbook of diagnostic classification models (pp. 359-377). Springer.  

 
Stout, W., Henson, R. A., DiBello, L., & Shear, B. (2019). The reparameterized unified model 

system: A diagnostic assessment modeling approach. In M. von Davier & Y.-S. Lee 
(Eds.), Handbook of diagnostic classification models (pp. 47-80). Springer.  

 
Tatsuoka, C. (2002). Data analytic methods for latent partially ordered classification models. 

Journal of the Royal Statistical Society, Series C, Applied Statistics, 51, 337-350.  
 
Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on 

item response theory. Journal of Educational Measurement, 20(4), 345-354.  
 
Tatsuoka, K. K. (1990). Toward an integration of item-response theory and cognitive error 

analysis. In N. Frederiksen (Ed.), Diagnostic monitoring of skill and knowledge 
acquisition (pp. 453–388). Lawrence Erlbaum Associates.  

 
Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. 

Routledge.  
 
Templin, J., & Bradshaw, L. (2013). Measuring the reliability of diagnostic classification 

model examinee estimates. Journal of Classification, 30, 251-275. 

https://doi.org/10.1007/s00357-013-9129-4  

 
Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of 

models for estimating and testing attribute hierarchies. Psychometrika, 79(2), 317-
339. https://doi.org/10.1007/S11336-013-9362-0  

 
Templin, J., & Henson, R. A. (2006). Measurement of psychological disorders using 

cognitive diagnosis models. Psychological Methods, 11(3), 287-305. 
https://doi.org/10.1037/1082-989X.11.3.287  

 
von Davier, M. (2005). A general diagnostic model applied to language testing data. ETS 

Research Report Series RR-05-16. ETS. 
https://files.eric.ed.gov/fulltext/EJ1111422.pdf  

 
von Davier, M. (2007). Hierarchical general diagnostic models. ETS Research Report Series 

RR-07-19. ETS. https://doi.org/10.1002/j.2333-8504.2007.tb02061.x  
 
von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and 

Assessment Modeling, 52(1), 8-28.  
 

https://doi.org/10.3389/fpsyg.2020.621251
https://doi.org/10.1186/s40468-021-00148-z
https://doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1007/S11336-013-9362-0
https://doi.org/10.1037/1082-989X.11.3.287
https://files.eric.ed.gov/fulltext/EJ1111422.pdf
https://doi.org/10.1002/j.2333-8504.2007.tb02061.x


53 

 

von Davier, M. (2014). The log-linear cognitive diagnostic model (LCDM) as a special case 
of the general diagnostic model (GDM). ETS Research Report Series RR–14-40. 
ETS. https://doi.org/10.1002/ets2.12043 

 
von Davier, M. (2018). Diagnosing diagnostic models: From von Neumann’s elephant to 

model equivalencies and network psychometrics. Measurement: Interdisciplinary 
Research and Perspectives, 16(1), 59-70. 
https://doi.org/10.1080/15366367.2018.1436827  

 
von Davier, M., & Haberman, S. (2014, Apr). Hierarchical diagnostic classification models: A 

family of models for estimating and testing attribute hierarchies - a commentary. 
Psychometrika, 79(2), 340–346. https://doi.org/10.1007/s11336-013-9362-0  

 
von Davier, M., & Lee, Y.-S. (Eds.). (2019a). Handbook of diagnostic classification models. 

Springer.  
 
von Davier, M., & Lee, Y.-S. (2019b). Introduction: From latent classes to cognitive 

diagnostic models. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic 
classification models (pp. 1-17). Springer.  

 
von Davier, M., & Yamamoto, K. (2004). A class of models for cognitive diagnosis presented 

at the Fourth Spearman Conference, October 2004, Philadelphia, PA.  
 
Wang, L. L., Jian, S. X., Liu, Y. L., & Xin, T. (2023). Using Bayesian networks for cognitive 

assessment of student understanding of buoyancy: A granular hierarchy model. 
Applied Measurement in Education, 1-15. 
https://doi.org/10.1080/08957347.2023.2172014  

 
Wang, S., & Douglas, J. (2015, Mar). Consistency of nonparametric classification in 

cognitive diagnosis. Psychometrika, 80(1), 85-100. https://doi.org/10.1007/s11336-
013-9372-y  

 
Wang, W., Song, L., Chen, P., Meng, Y., & Ding, S. (2015). Attribute-level and pattern-level 

classification consistency and accuracy indices for diagnostic assessment. Journal of 
Educational Measurement, 52, 457-476.  

 
Wu, X., Wu, R., Chang, H. H., Kong, Q., & Zhang, Y. (2020). International comparative study 

on PISA mathematics achievement test based on cognitive diagnostic models. 
Frontiers in Psychology, 11, 1-13. https://doi.org/10.3389/fpsyg.2020.02230  

 
Zhang, S., Liu, J., & Ying, Z. (2023). Statistical applications to cognitive diagnostic testing. 

Annual Review of Statistics and Its Application, 10(1), 651-675. 
https://doi.org/10.1146/annurev-statistics-033021-111803  

 

 

  

https://doi.org/10.1002/ets2.12043
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1007/s11336-013-9362-0
https://doi.org/10.1080/08957347.2023.2172014
https://doi.org/10.1007/s11336-013-9372-y
https://doi.org/10.1007/s11336-013-9372-y
https://doi.org/10.3389/fpsyg.2020.02230
https://doi.org/10.1146/annurev-statistics-033021-111803


54 

 

Appendix A: definitions 

For reference, this appendix provides definitions of key terms and abbreviations.  

Table 15: specific model names and other abbreviations. 

Abbreviation Definition 

A-CDM Additive CDM (de la Torre, 2011) 

AHM Attribute Hierarchy Method (Leighton et al., 2004) 

BKT 
Bayesian Knowledge Tracing (Corbett & Anderson, 1995; Pelánek, 

2017) 

BN 
Bayesian Network or Bayes Net (Almond & Zapata-Rivera, 2019; 

Culbertson, 2016) 

CDM Cognitive Diagnostic Model (equivalent to DCM for most authors) 

cG-DINA 
continuous G-DINA, for continuous responses (de la Torre & Minchen, 

2019) 

C-RUM 
Compensatory Reparameterized Unified Model (DiBello et al., 1995; 

Hartz, 2002) 

DAG Directed Acyclic Graph 

DCM Diagnostic Classification Model (equivalent to CDM for most authors) 

DINA Deterministic Input, Noisy “And” gate model (Junker & Sijtsma, 2001) 

DINO Deterministic Input, Noisy “Or” gate model (Templin & Henson, 2006) 

DLM Dynamic Learning Maps® (Clark et al., 2017) 

EAR Element-wise Agreement Rate 

GDI 
G-DINA Discrimination Index (de la Torre & Chiu, 2016; de la Torre & 

Minchen, 2019) 

G-DINA Generalized DINA (de la Torre & Minchen, 2019; de la Torre, 2011) 

GDM General Diagnostic Model (von Davier, 2005) 

GGM Gaussian Graphical Model 

GNPC Generalized Nonparametric Classification method (Chiu et al., 2018) 

HDCM 

Hierarchical DCM: based on full LCDM with constraints added and 

considering attribute hierarchical relationships (Templin & Bradshaw, 

2014) 

HGDM Hierarchical General Diagnostic Model (von Davier, 2007, 2010) 

HMM Hidden Markov Model  

HO-DINA Higher Order DINA (de la Torre & Douglas, 2004, 2008) 

IAV Intraindividual variation 

IEV Interindividual variation 

KST Knowledge Space Theory (Doignon & Falmagne, 1985) 

LCDM Log-linear CDM 

LLM Log-linear model (Maris, 1999) 

LLTM Linear Logistic Test Model 

MIRT Multiple IRT 

MRF Markov Random Field  

MS-DINA Multiple Strategies DINA (de la Torre & Douglas, 2008) 
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NC-RUM Noncompensatory reparameterized unified model (Hartz, 2002) 

NIDA Noisy Input, Deterministic "And" gate model 

NPC Nonparametric Classification method (Chiu & Douglas, 2013) 

PFA Performance Factor Analysis 

pG-DINA 
polytomous G-DINA, for polytomous attributes (de la Torre & Minchen, 

2019) 

PVAF Proportion of Variance Accounted For 

rRUM 
Reduced Reparametrized Unified Model (DiBello et al., 1995; Hartz, 

2002) 

RSM Rule Space Method (Tatsuoka, 1983) 

SANN Supervised Artificial Neural Network (Cui et al., 2016) 

sG-DINA 
sequential G-DINA, for polytomous responses (de la Torre & Minchen, 

2019) 

VAR Vector-wise Agreement Rate 

 

Definitions of cognitive diagnostic assessment and CDMs 

“Diagnostic classification models (DCM) are probabilistic, confirmatory multidimensional 

latent-variable models with a simple or complex loading structure. They are suitable for 

modelling observable categorical response variables and contain unobservable (i.e., latent) 

categorical predictor variables.” (Rupp & Templin, 2008b, p. 226) 

“DCMs are confirmatory multidimensional latent-variable models. Their loading structure/Q-

matrix can be complex to reflect within-item multidimensionality or simple to reflect between-

item multidimensionality. DCMs are suitable for modeling observable response variables 

with various scale types and distributions and contain discrete latent predictor variables. The 

latent predictor variables are combined by a series of linear-modeling effects that can result 

in compensatory and/ or noncompensatory ways for predicting observable item responses. 

DCMs thus provide multivariate attribute profiles for respondents based on statistically 

derived classifications.” (Rupp et al., 2010, p. 83) 

“DCMs predict probability of an observable categorical response from unobservable (i.e., 

latent) categorical variables. These discrete latent variables have been variously termed as 

skill, subskill, attribute, knowledge, and ability. In the present article, the term “attribute” is 

used to refer to the discrete latent predictor variables.” (Ravand & Baghaei, 2020, p. 25) 

“Among possible multidimensional models containing latent variables, cognitive diagnosis 

models (CDMs; DiBello et al., 2007; also labeled as diagnostic classification models, see 

von Davier & Lee, 2019) recently gained some attention. Roughly spoken, CDMs are a class 

of multidimensional categorical latent variable models that integrate theoretical assumptions 

about skills and then estimate the students’ possession of these skills.” (George & 

Robitzsch, 2021, p. 107) 

“Cognitive diagnosis models (CDMs) can be viewed as restricted versions of the more 

general latent class models. In particular, the number of latent classes, as well as their 

interpretation, are known a priori when CDMs are involved.” (de la Torre & Minchen,  

2019, p. 155) 
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“Diagnostic classification models (DCMs), also known as cognitive diagnostic models 

(CDMs), can be viewed as restricted versions of general latent class models … These 

models provide one way of classifying respondents into different diagnostic states.” (Sen & 

Cohen, 2021, p. 1) 

“CDMs are multivariate, discrete latent variable models developed primarily to identify the 

mastery, or lack thereof, of skills (or more generically, attributes) measured in a particular 

domain. Two features distinguish CDMs when compared to traditional item response 

models, namely, the finer-grained nature of the inferences that can be derived from the 

models, and the interpretability and relevance of these inferences to the student learning 

process.” (Deonovic et al., 2019, p. 444) 

“… statistical models that are well-suited to categorize examinees according to mastery 

levels for a set of hypothesized latent skills or abilities. These classification-based models, 

collectively termed cognitive diagnosis models (CDMs), can be organized into four major 

frameworks: rule space methodology (RSM; Tatsuoka, 1983), the attribute hierarchy method 

(AHM; Leighton, Gierl, & Hunka, 2004), diagnostic classification models (DCMs; e.g., Rupp, 

Templin, & Henson, 2010; Bradshaw, 2016), and Bayesian networks (BNs; e.g., Almond, 

Mislevy, Steinberg, Williamson, & Yan, 2015).” (Bradshaw & Levy, 2019, p. 79) 

Cognitive Diagnostic Assessment (CDA) is “designed to measure specific knowledge 

structures and processing skills in students so as to provide information about their cognitive 

strengths and weaknesses” (Leighton & Gierl, 2007a, p. 3). 

(Heller et al., 2015) 
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Appendix B: the ACTNext Education Companion App 

(ECA) 

The goal of the app development project was to make use of the huge amount of learner 

data held by ACT across tests/platforms, to make useful inferences: e.g., recommend 

learning resources for a student to practise a skill they haven’t yet mastered.  

The ECA app is built from six modules: 

1. The Learning Analytics Platform (LEAP), a data repository. 

2. A student data matching module. 

3. A CDM-based diagnostic model. 

4. A feedback model using the information from the diagnostic model. 

5. A feedback dashboard providing usable and interpretable output. 

6. Linking of the feedback to ACT resources. 

Deonovic et al. (2019, p. 449) state that the ECA development programme had to solve 

three major challenges: 

1. The mapping challenge: “how to leverage a large bank of assessment data which 

has been tagged and associated with multiple sets of attributes” (i.e., not one 

consistent taxonomy). The solution involved mapping from old to new (more 

comprehensive) taxonomies so that all data had rich metadata using a consistent 

holistic framework (HF) classification scheme26. 

2. The modelling challenge: “designing a model capable of drawing inference from the 

data available to the ECA about users’ skills and attributes”. The solution chosen for 

the ECA was the LLTM, an extension of the Rasch model which takes into account 

concepts from CDMs in the form of the Q-matrix. 

3. Validation challenge: “To validate the approach taken by the ECA we performed an 

intensive analysis of the data using the standard CDM approach.” 

In terms of the mathematics topics in the ECA and Q-matrix development (Deonovic et al., 

2019, pp. 451-452): 

• content experts developed the Q-matrices for the maths test 

• under consideration: 4 test forms, each with 60 items (=240 items in total) 

• 24 attributes in total, across three domains: 

o 10 for Operations, Algebra and Functions (OAF) 

o 5 for Geometry (G) 

o 9 for Number (N) 

• each domain was analysed separately, because there were a large number of 

attributes 

 

 

26 The holistic framework referred to is now used by ACT across many assessments and is available 
here: https://www.act.org/content/act/en/college-and-career-readiness/holistic-framework.html. 
Camara et al. (2015) described the underpinning research, and presented the different sections of the 
framework. The attributes defined by Deonovic et al. (2019, p. 453, Table 21.1) are granular 
statements that fit within this framework, while the domain and sub-domain structure used by 
Deonovic et al. is taken directly from the framework.   

https://www.act.org/content/act/en/college-and-career-readiness/holistic-framework.html
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• In analysing each domain, the domain-specific attributes were the focus of analysis 

and the rest (e.g., number skills when looking at the algebra test) were collapsed into 

coarser nuisance attributes. So, the total attributes in each domain were the domain-

specific ones reported above plus several nuisance attributes each.  

o The number of times target attributes were measured was variable: some as 

few as 3 times, others as many as 24 times.  

o Each item generally measured 1-3 target attributes + 0-1 nuisance attributes; 

this varied a bit by domain (higher ratio of nuisance to targets in Domain 2 – 

Geometry). 

o Not all 60 items were relevant to each domain: some measured only nuisance 

attributes. 

o On average, 54 items per test form were relevant to a given domain. 

o Nuisance attributes were the most frequently measured, for all three domains. 

Modelling 

• The G-DINA model was fitted to a subset of the data (N=5000 examinees). 

• Q-matrix validation was then carried out using the GDI and mesa plot (data driven) 

approach (Deonovic et al., 2019, p. 452). 

o “A mesa plot shows the PVAF [Proportion of variance accounted for] for some 

possible q-vectors for a given item. It always starts with all-zero q-vector. The 

cutoff for a q-vector to be considered appropriate was set at PVAF = 0.85.”  

o “The validation results given in Table 21.5 show that the attribute-wise 

agreement between the provisional and suggested Q-matrices across all test 

forms and domains was very high: the minimum was 93% and the average 

was 95%.” 

• The Wald test was used to conduct item-level comparisons of G-DINA and a number 

of reduced (specific) CDMs: DINA, DINO, LLM, rRUM and A-CDM. The purpose was 

to find the optimal set of CDMs for a given test.  

• Patterns were found by domain: 

o G-DINA was selected most frequently, especially for Algebra and Number 

o LLM and rRUM also selected frequently. All of these relax the “two latent 

classes” constraint, to different extents. 

o Few items were selected to be DINA, DINO or A-CDM 

o For Geometry, G-DINA, LLM and rRUM were selected most frequently; A-

CDM and DINA infrequently.  

• The authors concluded that the results supported “the construct validity of the Q-

matrices developed by content experts” (p. 455). 
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Appendix C: organising the field of cognitive 

diagnostic assessment 

Figure 7 gives a graphical representation of the relationships between different models and 

model families described in the current report. The left hand side of Figure 7 shows model 

relations within cognitive diagnostic assessment: the basic structure is from the statistical 

account by Zhang et al. (2023), and additional models and relationships have been added to 

this structure. The right hand side of Figure 7 shows a simplified map of learner modelling 

techniques, structured by the overview from Pelánek (2017). While learner modelling was 

not the focus of this report, CDMs have close relationships to models applied in learner 

modelling, and the context is of particular interest given the importance of learner modelling 

for advanced digital learning and assessment products. 

Figure 7 summarises multiple kinds of relationship: 

• connecting lines with no arrows indicate that the lower model (or model family) is an 

example or case of the model/category above, 

• connections with a single arrow indicate where one model is a development of or 

from another, 

• connections with arrows at each end indicate a statistical equivalence. A solid line 

indicates that the equivalence is true generally, while a dotted line indicates 

equivalence for a subset or under certain conditions only. Where possible, 

references have been added to show where to find precise details. 
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Account for stochastic relationship between mastery and responses
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Figure 7: models for cognitive diagnostic testing and relevant nearby areas. 
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